NID 002325074 13B

651288

March 29, 2004

Mr. Frank Faranca
Case Manager, Bureau of Publicly Funded Site Remediation
New Jersey Department of Environmental Protection
401 E. State Street P.O. Box 028
5th Floor West
Trenton NJ 08625-0028

RE: NJPDES-DGW Permit 0086487 Effective March 1, 2000

Dear Mr. Faranca:

Two copies of the Discharge to Groundwater Report consisting of one (1) T-VWX-014, seven (7) VWX-015 Groundwater Analysis – Monitoring Well reports and report Sections 1.0 through 8.0 for the January through March 2004 quarter are enclosed.

Detection Monitoring was performed in accordance with Part 4-DGW Table 2, using the Ground Water Sampling and Analysis Plan approved in April 1996.

Lenox inspection logs were reviewed and a summary of the logs for the quarter is enclosed.

The "Mann-Whitney U-Test" statistical analysis of the ground water TCE results from the five (5) sentinel wells over eight (8) sampling quarters was rolled forward seventeen (17) quarters to cover the January 2004 data and is included in section 7 of the report. The null-hypothesis is accepted for sentinel wells MW-75, MW-76, MW-78 and MW-79A and we cannot statistically conclude that the TCE concentrations are decreasing for the seventeenth (17) quarter's data set. The null-hypothesis is **not accepted** for sentinel well. MW-77 and we can statistically conclude that the TCE concentration is decreasing for the past eight quarters' data set. In addition, MW-75 has been non-detect for the past eighteen consecutive quarters.

The **bold** data in the tables denotes elevated results, which exceed the site-specific GWQC's for lead (10ug/l) and zinc (36.7 ug/l) as determined by calculating their arithmetic means from data reported in a 3-year study. Trichloroethylene levels are compared to the New Jersey limit of 1.0 ppb. Please note:

- MW-3 showed elevated levels of both total and dissolved lead, while MW-72 and MW-73 showed elevated levels of total lead but not dissolved lead. Both total and dissolved were detected at less than elevated levels in MW-4;
- MW-3, MW-4, MW-15, MW-17, MW-25, B-31, MW-73 and MW-74 showed elevated levels of both total and dissolved zinc, while and MW-76 showed an elevated level of dissolved zinc but not total zinc;

Mr. Frank Faranca March 29, 2004 Page 2

Re: NJPDES-DGW Permit 0086487 Effective March 1, 2000

- Of the fifteen (15) wells sampled for TCE this quarter, one (1), was higher than the last round. six (6) wells decreased, MW-10, MW-25, B-31, MW-77, MW-78 and MW-79A. Six (6) wells, MW-1, MW-12S, MW-13, B-59, MW-75, MW-76, MW-80 and MW-81 remained essentially the same;
- TCE was elevated in three (3) of the five (5) downgradient sentinel wells, MW-77, MW-78 and MW-79A at 1.4, 1.3 and 5.4 ug/L- respectively. All three (3) of these sentinel wells decreased;
- The volatile organic compound cis-1,2-dichloroethene was detected in wells MW-77 and MW-79A. Trans-1,2-dichloroethene was detected in MW-79A. TCE daughter species were not detected in any other wells;
- The Monthly Daily Average Flows for the quarter were 320,563 gallons per day for December 2003, and 314,409 gallons per day for January and 308,448 gallons per day for February 2004;
- GAC Treatment System effluent unfiltered, water sample contained elevated zinc at 160 ug/L and the filtered mid and effluent contained elevated zinc at 73.2 and 161 ug/L respectively. The zinc is attributed to the higher zinc levels previously observed in B-31 and other wells;
- The No TCE daughter compounds were detected in the GAC Treatment System influent, mid or effluent water samples;
- Lead was detected, at less than elevated levels, in the GAC Treatment System, unfiltered, influent and effluent water samples and the filtered mid sample;
- TCE was detected below the New Jersey MCL of 1.0 ug/l in only one (1) of the three (3) residential, downgradient wells sampled.

Please call (609) 965-8272 if there are any questions.

Sincerery,

John F. Kinkela

Director of Environmental Engineering

Enclosures

-Pomona DGW and TCE Quarterly Groundwater Monitoring Report - January 2004

Monitoring Round

-Summary of Inspection Logs - January through March 2004 Quarter

bcc:

J.H. Ennis (w/attachments)
L.A. Fantin, Lenox (w/attachments)
Andrew Park (w/attachments)

File

NE W JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES

Form T-VWX-14

MONITORING REPORT - TRANSMITTAL SHEET

NJPDES No.	MO YR MO YR
0 0 8 6 4 8 7	0 1 0 4 thru 0 3 0 4
PERMITEE: Name LENOX INCORPORATED Address 100 LENOX DRIVE LAWRENCEVILLE, NEW JERSE	EY 08648
FACILITY: Name LENOX CHINA, A DIVISION OF Address TILTON ROAD POMONA, NEW JERSEY 08240	
Telephone (609) 965-8272	(Oddrity) / TEXTITIO
FORMS ATTACHED (Indicate Quantity of Each)	OPERATING EXCEPTIONS YES NO
SLUDGE REPORTS - SANITARY	DYE TESTING
	009 TEMPORARY BYPASSING
SLUDGE REPORTS - INDUSTRIAL	DISINFECTION INTERRUPTION
T-VWX-010A T-VWX-010B	MONITORING MALFUNCTIONS
WASTEWATER REPORTS	UNITS OUT OF OPERATION
	OTHER
GROUNDWATER REPORT (As per permit)	(Detail any "yes" on reverse side in appropriate space.)
7 VWX-015 WWX-016 WWX-017	
NJPDES DISCHARGE MONITORING REPORT	
EPA FORM 3320-01	
information submitted in this docume of those individuals immediately resp submitted information is true, accurat	ve personally examined and am familiar with the nt and all attachments and that, based on my inquiry onsible for obtaining the information, I believe the e, and complete. I am aware that there are significant tion including the possibility of fine and imprisonment PRINCIPAL EXECUTIVE OFFICER or
LICENSED OPERATOR	DULY AUTHORIZED REPRESENTATIVE
Name	Name JOHN F. KINKELA
Grade & Registry No.	Title <u>DIR. OF/ENVIRONMENTAL ENGINEERIN</u>
Signature	Signature Jm/J / Mmhelm 3 2

Form VWX-15A

PLE	EAS	ΕT	YPE	Ξ0	RP	RIN	IT V	<u>MIT</u>	HE	3AI	LLPOINT PEN				/NE / ID			ELL	. <u>IU</u>	NO	.	VIVV	<u>'-1</u>	\neg
	ILITY						X (_	311		NO	•							4
LAB	NAN	ΛE									TON, NJ													
												SAMPLI	DATE	=										
											MELL BEDMIT NO	YR M		- AY		NJ	LAB	CEI	3T N	lo.	Į,	WQI	M US	E
_	_		JPDE			1 ^	T	1	_	<u> </u>	WELL PERMIT No 2			2	۱ [2					Γ	\Box	
S			3 0	3 6	4	8	<u> </u>	J	9	6	16	17	<u> </u>	22		23	1			27	Ĺ		28	
1		2					0		9															
THE	SC	HE	DULE	E IN	DICA	TE	D BI	ELC)WI	s t	TO BE OBSERVED FROM	0 1			0 M		0	<u>4</u>]						
											SUBMIT WITH SIGNED T-	мо уwx-014	YR		IVI	U	11	Γ.						
,	E	M	Δ Ν	vi J	1	Δ	s	Ω	N	D										•				R E
A			P A	A L	υ	U	Ε	С	0	E	<u>.</u>	LINUTO		ם עם	AME	TEE	,		١	/AL	IJF	:		M
N	В	R	<u>R `</u>	Y N	1 L	G	P	T	<u> </u>	_0	ANALYSIS	UNITS feet Msl. to	-	TAK	AME		\Box			·/_	<u>-~</u>	$\overline{}$	$\neg \neg$	
	Ţ	Ι.	, [1				_			Elev. of top of well casing with cap off (as specified in well completion report)	nearest 0.0	7	2	1	1	0		6	9		2	8	
X	4		<u> </u>	+	<u> </u> X	-	+-	X	┼	+	Elev. of original ground level	feet Msl: to	+	ϯ <u>៑</u>	\vdash			\Box		\neg		\exists	\neg	\neg
х		- [,	x		×	1	İ	X	1		(as specified in well completion report)	nearest 0.0	1 7	2	0	0	9		6	7		0	0	_
쓔	\dashv	- 	`	+-	╁	╁╴	╁	⇈	+	t	Depth to water table from top of casing	feet: to												
x			x l	ļ	X			X	1		prior to sampling (with cap off)	nearest 0.0	1 8	2	5	4	6		1	0		0	1	4
H	一十	+	Ť	十	-	1	1	1	1	T	Depth to water table from original	feet: to	. _							_	Ì	, ,	,	ŀ
X			x		X			X		1_	ground level prior to sampling	nearest 0.0	2 7	2	0	1	9	\vdash	\dashv	7	∸╢	7	3	\dashv
X											Sodium, Total	mg/l as Na	8	0	2	3	5_		1	0	9	0	0	
X			x	Ī	X	T		x	T		Lead, Total	ug/l as Pb_	0	1	0	5	1			3		0		к
		寸		\top	$\neg \vdash$	1	+	x	T	†	Zinc, Total	ug/l as Zn	0	1	0	9	2		2	0		0		к
X			X		_ <u> X</u>	+-	+-	+^	+-	+	Zilic, Total													
X_						╧	\perp	L			Sodium, Dissolved	mg/I as Na	8	0	2	3_	5	<u> </u>		9	9	1	0	
x			$_{x} $		×			×			Lead, Dissolved	ug/l as Pb	0	1	0	5	1			3		0		κľ
x			×		×			×	Ţ		Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		2	0		0		κ
				\dagger	X		1	x	\top	T	Total Dissolved Solids	ppm	7	0	3	0	0		7	9		0		
X	\vdash		<u> </u>	+		T	\dagger	Τ.		†		pt-co	_ _	0	0	8	0		3	5		0		
X	\vdash	-	×	+	- X	+	+-	+X	+	+	Color			1	Ì									
X	<u> </u>		×	\perp	×	1	\perp	X	1	\perp	pH	std. units	0	0	4	0	0	+-	-	4	ŀ	9	0	\dashv
×			x		<u> </u>			X		\downarrow	Conductance, Specific	umhos/cm	0	0	0	9	5	<u> </u>	9	6	Ŀ	0	\vdash	\dashv
X			x		×			×			Dissolved Oxygen	mg/l		-	\perp	_	_	_	_	9	<u>.</u>	8	0_	
X	Γ							T			Sulfate, Dissolved (as SO4)	mg/l	_ 0	0	9	4	6	_	2	0	<u> </u>	0		к
X	+-					1					Nitrogen, Ammonia Dissolved NH3+NH4 as N	mg/l as N	0	0	6	0	8			0	<u> </u>	1	0	κ
ŕ	\vdash	\vdash		\dashv	\dashv	+	+	+	1	\dagger														
-	+	\vdash	\vdash	\dashv	+	+	+	+	+	+														
-	1	↓_			+	+	+	+	+	+	· · · · · · · · · · · · · · · · · · ·		+	\dagger	+	\vdash	T	1	 	-	\vdash	\top		

Form VWX-15A

			OF	R PF	RIN	ΓV	VITI	<u> </u>	AL	POINT PEN	 		_		R'S		ELI	_ ID	No	·	MV	1-3	\neg
FACILI	TY NA	ME		LE	NO)	X C	HI	NΑ					511	טוי	No	·							_
LAB N	AME					_			4YT	ON, NJ						_							
						_					SAMPLE D	۱۸⊤⊏				•							
										WELL PERMIT No.	YR MO		ΑY		NJ	LAB	CE	RT N	No.	F	WQI	M US	ŝΕ
	.r <u>~1</u>	JPDE	SNO). 🕡	οT	71		3	6		0 4 0 1		2			_		2	_	j	Γ		
S NJ)[0]	<u>0 c</u>	10	4	0]	<u>.</u>		9	ركا	16	17		22		23				27			28	
											0 1 0	Lal		ا م ا	3	اما	ا∡ا						
THE S	CHE	DULE	IND	ICA	TED	BE	LO	N IS	S TC	BE OBSERVED FROM		/R			ان ا0	YI							
										SUBMIT WITH SIGNED T-V													
J F	М	A N	1 J	J	Α	s	0	N	D														R E
ΑE	Α.	P /	\ U	U	U		C			ANALYSIS	UNITS		PAR	AME	TEF	₹		,	VAL	_UE	<u>:</u>		M
N B	R	R \	r N	Τ_	٦	٣.	'	<u> </u>	Г	Elev. of top of well casing with cap off	feet Msl: to	T	Γ										
x	1 1	x		x			Х			(as specified in well completion report)	nearest 0.01	7	2	1	1	0		6	_7		0	9	
		$\neg \uparrow$	T	T			\ .			Elev. of original ground level	feet Msl: to	7	2	0	0	9		6	5	ı İ	0	٥	
X	$\downarrow \downarrow$	X L	_	X	\vdash		X	<u> </u>	-	(as specified in well completion report) Depth to water table from top of casing	nearest 0.01 feet: to	+ ′	-	H				H	<u> </u>	\dashv	Ť		_
x	1 1	x		x	1 1		X			prior to sampling (with cap.off)	nearest 0.01	8	2	5	4	6			8		6	4	
r T	++	$\stackrel{\sim}{+}$	+	\top	П				1	Depth to water table from original	feet: to	_				ا ا					[ا	5	
X.	$\downarrow \downarrow$	X		X	$\perp \downarrow$	<u> </u>	X	<u> </u>	igspace	ground level prior to sampling	nearest 0.02	7	2	0	1	9		\vdash	6	┌╌┤	5	-	
×										Sodium, Total	mg/l as Na	8	0	2	3	5		2	0	9	0	0	
x		х		x		i	X			Lead, Total	ug/l as Pb	0	1	0	5	1		2	4		9	\dashv	
x		х		×			х			Zinc, Total	ug/l as Zn	0	1	0	9	2		3	4	2	0		
x				,						Sodium, Dissolved	mg/I as Na	8	0	2	3	5	_:_	2	1	2	0	0	
×	† †	x		x			x			Lead, Dissolved	ug/l as Pb	0	1	0	5	1		1	3	<u> </u>	2		
×	†	x	1	x			Х			Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		3	4	3	0		
x			1					Γ		Total Dissolved Solids	ppm	7	0	3	0	0		1_	5	8			
×	<u> </u>	x		x			X			Color	pt-co	0	0	0	8	0	L	2	0	Ŀ	0		
×		x	- - 	X	Τ.		x			рН	std. units	0	0	4	0	0			5	<u> </u>	4	2	
×	+-	x		X		T	x	T		Conductance, Specific	umhos/cm	0	0	0	9	5	_	2	6	3		0	
×		x	1	X			x			Dissolved Oxygen	mg/l							<u>_</u>	6	_	7	0_	
	\dashv									Sulfate, Dissolved (as SO4)	mg/l	0	0	9	4	6		3_	3_	<u> </u>	6		
×	+	H	\dashv	+	\dagger	1	1	+	T														
	+	+	+	+	+	\vdash	+	+	+-						T								
-	+	\vdash	\dashv	+	+	+	+	+	+		 	\dagger	\vdash	1	T				<u> </u>	T			
		$\downarrow \downarrow$		-	+	+	+	+	+			+-	+	\vdash	-	\vdash	-	+-	-	+			-
		1	- 1	- [1	1	1	1	1	· ·		1	1	1	1	Į.	1	1	1	1	1	1 1	1

Form VWX-15A

PLE	ASE	ΤY	PΕ	OF	R P	RIN	<u>۱</u> ۳۱	W۱٦	ГН	ВА	LLPOINT PEN			O١	٨N	ER'	S V	۷EL	<u>L I</u>	D N	0.	M	W-4	
FACI	_ITY I	VAN	1E		LE	NO) X (CHI	ΙNΑ	ν				sv	V 10	O N	0.							
LAB N	VAME	:			AC	CCL	JTE	ST	, D	ΑY	TON, NJ													
			•									SAMPLE [> A T	_										
			DEC	NI.							WELL DEDMIT NO					NI I			- D-T	. No		14//	QM L	ISE
SN	'حان	17	DES Fa T	6		٥	7	1	<u> </u>	T 6	WELL PERMIT No. - 0 3 1 1 9 - 4	YR MO 0 4 0 1		2	٦		_			No. 9	1	1	IVIC	,3E
1 1	ال 2	U	ि	0	4	0	<u> </u>	j	<u>၂၁</u> 9	6	16	17	1 4	12	J	23		<u> </u>	4	27	J		28	l
1	2						Ü		3		10	17				20				21				_
THE	SCHE	EDL	JLE I	IND	ICA	TE	DВ	ELC	WC	IS T	TO BE OBSERVED FROM	0 1 0 MO	4 (R			<u>3</u> NO		4 (R						
											SUBMIT WITH SIGNED T-V		I IX		,	VIC		I K						
J F	- М	Α	М	J	J	Α	s	0	N	D														R
A E			Α						0								_							E
N E	R	R	Y	$\frac{N}{1}$	L	G	Р	Τ.	r^{\vee}	C	ANALYSIS Elev. of top of well casing with cap off	UNITS feet Msl: to		PAR T	T T	ETE.	R T	1	г	VAI	-01	-		M
x		x			Х			Х		Ì	(as specified in well completion report)	nearest 0.01	7	2	1	1	0		6	6	١.	9	8	ĺ
	+		H						_	┢	Elev. of original ground level	feet Msl: to	Ė	╅	Ť				Ť	Ť	Ė	Ť		
X		X	Ш		X			Х		<u> </u>	(as specified in well completion report)	nearest 0.01	7	2	0	0	9		6	5	Ŀ	0	0	_
				ı				l,		ļ	Depth to water table from top of casing	feet: to			_	١.								
X		X	Н	\dashv	X	\vdash	_	Х	⊢	 	prior to sampling (with cap off) Depth to water table from original	nearest 0:01 feet: to	8	2	5	4	6	├	-	5	<u> </u>	9	8	\vdash
$ _{X} _{-}$		X i			Х			x			ground level prior to sampling	nearest 0.02	7	2	0	1	9			4		0	0	
x											Sodium, Total	mg/l as Na	8	0	2	3	5		1	4	2	0	0	
		.,		\dashv													1		Ė		<u> </u>		Ť	
X		X		_	X			X	_	\vdash	Lead, Total	ug/l as Pb	0	1	0	5	1			5	Ŀ	9		_
X	\perp	X			Х	_		X	_	_	Zinc, Total	ug/l as Zn	0	1	0	9	2	-	6	3	Ŀ	0		<u> </u>
x											Sodium, Dissolved	mg/l as Na	8	0	2	3	5		1	4	8	0	0	
x		X			X			x			Lead, Dissolved	ug/l as Pb	0	1	0	5	1			3		8		
x		χ.			Χ			x			Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		6	6		2		
											Total Dissolved Solids		7	0	3	_	Ī,		1	6	1			
\vdash	+		\forall	\dashv				╁			Total Dissolved Solids	ppm	Ė	Ť	3	۲	0		<u> </u>	6	$\dot{\sqcap}$		\Box	
X	+	<u>x</u> _		_	X		_	Χ.	L	L	Color	pt-co	0	0	0	8	0	-		5	H	0		
X		X_			X			X		L.	рН	std. units	0	0	4	0	0			5	<u>_</u>	7	3	
x		X			Х			x			Conductance, Specific	umhos/cm	0	0	0	9	5		2	2	1		0	
x		Х			X			X			Dissolved Oxygen	mg/l								9		1	0	
x											Sulfate, Dissolved (as SO ₄)	mg/l	0	0	9	4	6		6	9		0		
							-																	
-			\vdash	\dashv						-		+			-		-			\dashv	\dashv			\dashv
	+	_		\dashv				\vdash		-		+	_		-			\vdash		\dashv	\dashv	\dashv	\dashv	\dashv
	+							lacksquare	_	_							<u> </u>	-		\dashv	4	_	\dashv	4
						1						-					١.		i		- 1			

Form VWX-15A

GROUNDWATER ANALYSIS - MONITORING WELL REPORT

OWNER'S WELL ID No. MW-5

																					_							_			_
F	CIL	ITY N	VAN	ΙE		LE	NC)X(СНІ	INA	<u> </u>										SV	V IE) No	٥.		M۱	W-5	 ;			
L	BN	AME	:		_							TON, NJ									<u> </u>										
L						AC	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>) I E	-31	, <u>U</u>	<u> </u>	TOIN, INJ																			
																			SAMPLE (DATI	Ξ								_		
_	7			DES			_		1	_	Τ.			ERMIT		<u> </u>		Г	YR MO		AY	1	NJ	LAF		RT		_	WC	M L	JSE 1
L	Пил	0	0	8	6	4	8	<u>7</u> 8]	9	6	- 0	2	9	1 3	3 -	0 16	_	0 4 0 1 17	2	22	_	23		1 1	2	9 27	-		 28]
1		2						0		9							10		17		22		23				21			_26	-
TH	HE S	CHE	ΞDL	JLE	IND	OICA	\ΤΕΙ	DΒ	ELC	wc	IS T	O BE OBS	SERVI	ED FF	ROM				0 1 0	4		0	3	0	4						
																			MO '	YR			10		/R	•					
												<u>S</u>	<u>SUBI</u>	MIT V	NITH	SIGN	IED T-V	VW	X-014												_
J	F	М	Α	M	j	j	A		0	N																					R E
A N	E B			A Y					C T					ANA	ALYSIS		•		UNITS		PAR	AME	ETE	R			VAL	LUF	Ξ		М
Г	1.			\Box			Ŏ	Ė	Т	Ė	Ť	Elev. of to		ell cas	sing wit	h cap			feet Msl: to	Т											
×	╁	\vdash	Х	Н		X	_	⊬	X	├	╀┈	(as specific				on rep	ort)		nearest 0.01 feet Msl: to	7	2	1	1	0	\vdash	6	4	H	1	7	_
X	\perp	Ш	Х			Х		<u> </u>	X	L		(as specific	ed in v	well co	ompletio				nearest 0.01	7	2	0	0	9	Ш	6	3	Ŀ	0	0	_
x			х			x			x			Depth to w prior to sar					sing		feet: to nearest 0.01	8	2	5	4	6			7	.	6	3	
Г	1	П		П		x			x	Г	\Box	Depth to w	vater ta	able fr	rom orig	ginal			feet: to	1,			4		П	П					
X	╁╌	\vdash	Х	H		 		\vdash	厃	┝	-	ground lev	ei pric	10 8	ampling]		+	nearest 0.02	7	2	U	1	9		H	6	H	4	6	-
	╁_	Ш	L	┟┤				<u> </u>	 	├—	—	ļ						\dashv		\vdash			_	\sqcup	$\vdash \vdash$	$\vdash \vdash$				$\vdash \vdash$	<u> </u>
									L	L					· 								İ								
	Ţ																														
\vdash	\dagger	\vdash		П			_		T	┢								1	·									П			
-	+	$\vdash\vdash$	-	H			<u> </u>	⊢	<u> </u>	-	 -						<u> </u>	+				_	_	\vdash	\vdash	\vdash	-	Н	\vdash		
\vdash	<u> </u>	\sqcup	_					-	⊬	\vdash	\vdash	 						4		-				Н	Н	\dashv				\square	
L	\coprod.								L										· · · · · · · · · · · · · · · · · · ·					Ш				\square			
											1							- 1													ł
Г	\top	\Box		П						Г																		П			
\vdash	╁	+		H			H		╁	\vdash	\vdash							+		\vdash						\dashv	\dashv	Н			
\vdash	┼	₩		Н		 	-	\vdash	⊢	<u> </u>	₩	 						\dashv		\vdash				$\vdash \vdash$	\vdash	-		\vdash	\dashv	\dashv	
		Ш				_			L	<u> </u>								\perp									\Box				
	.			.																							ŀ				
	1	П						Г																							
-	+-	\vdash		H			\vdash	-	\vdash	\vdash	\vdash							\dashv		-					\dashv	\dashv		\Box	\dashv	\dashv	
-	+	₩	<u> </u>	$\vdash \mid$			-	 	\vdash	⊬	├	<u> </u>						\dashv		\vdash		\Box			\dashv	\dashv	\dashv		\dashv	\dashv	
L	_	igspace	_	Ц					\bigsqcup	L	<u> </u>							_		igspace					\square	\dashv	\dashv			_	
															- <u></u>																
		Π																T													

Form VWX-15A

				OF	R P	RIN	۱T /	W۱٦	ГН [.]	BA	LLPOINT PEN				_			۷EL	_L I	D N	o.	M	W- 6	;
FAC	ILÎTY	NAN	ΊE		LE	NC	X (СН	INA	1				Sv	V IE) N	0.							
LAB	NAM	E					-				TON, NJ													
											WELL BERMEN	SAMPLE I										<u></u>		
<u>.</u>		NJP				_		1	_	Τ_	WELL PERMIT No.	YR MO		AY T A	1		_	B CE		_	1	Iwo	M L	JSE 1
S			8	ь	4	8		J	3	6		0 3 1 0	1	9	-	1		ᆣ	2		-		L	j
1	2		•				8		9		. 16	17		22		23				27		<u> </u>	28	
THE	SCH	IEDU	JLE	INE	OICA	ATE!	DВ	ELC)W	IS T	O BE OBSERVED FROM	1 0 0 MO	3 YR	j		<u>2</u> 10		3 /R]					
											SUBMIT WITH SIGNED T-		i iX		,	/IO	1							
J	F M	1 A	М	J	J	Α	s	0	N	D														R
Α	E A			U				С																Ε
N	B R	R	Y	N	L	G	Р	T		<u> </u>	ANALYSIS	UNITS	1	PAR	AM	ETE	R	_	·	VAI	<u>LU</u> E	<u>=</u>		M
x		x			x	ŀ		x		1	Elev. of top of well casing with cap off (as specified in well completion report)	feet Msl: to nearest 0.01	7	2	1	1	0		6	5		0	8	
H	╁	╁		-	<u>^</u>	\vdash	-	r	\vdash	╁	Elev. of original ground level	feet Msl: to	╁	 -	H	†÷	۲	╁	۲	۲	H	۲	۳	
x		X			X			X	l	L	(as specified in well completion report)	nearest 0.01	7	2	0	0	9		6	3	<u> </u>	0	0	ļ
		Ī.,							П	Γ	Depth to water table from top of casing	feet: to												
X		X	<u> </u>	<u> </u>	X			Х	 	▙	prior to sampling (with cap off)	nearest 0.01	8	2	5	4	6	—	⊢	7	Ŀ	3	8	⊢
x		x			x			x			Depth to water table from original ground level prior to sampling	feet: to nearest 0.02	7	2	0	1	9		'	5	İ	3	0	
\vdash	+	┼		┢	Ĥ	┢	<u> </u>		一	H	ground level prior to sumpling	nearest o.oz	ΙĖ	<u> </u>	۲	广	Ť	\vdash	\vdash	H	Ė	۳	Ť	H
X		_	L		<u> </u>			<u> </u>	L	L	Sodium, Total	mg/l as Na	8	0	2	3	5	<u> </u>		9	7	6	0	_
x		x			x			х	L		Lead, Total	ug/l as Pb	0	1	0	5	1			3	Ŀ	0		К
x		x			х			x	İ		Zinc, Total	ug/l as Zn	0	1	0	9	2		2	0		0		к
什	+	+^	\vdash		Ĥ	├		Ĥ	一	┢	Zinc, Total	ug/r us zir	۲	<u> </u>	Ť	Ť	-	╁	Ħ	Ť	Ė	Ť		ı ·
X	_	┷	ļ		_	_		_	lacksquare	<u> </u>	Sodium, Dissolved	mg/l as Na	8	0	2	3	5	<u> </u>	1	0	3	0	0	
×		x			X			x	L		Lead, Dissolved	ug/l as Pb	0	1	0	5	1			3	Ŀ	0		к
$ _{X} $		x			X	-		×			Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		2	0		0		ĸ
X									Γ		Total Dissolved Solids	ppm	7	0	3	0	0		9	7		0		
\vdash	+	+	H	_	┢─	\vdash	\vdash	\vdash	 	T	Total Bissorved Collect		├	-	Ť	۳	Ť	H	H		H	<u> </u>	\Box	Н
X	\perp	X	_	_	X	L		X	igspace	igspace	Color	pt-co	0	0	0	8	0	Щ	Ш	5		0		к
X	\perp	X			X			х	L	L	рН	std. units	0	0	4	0	0		Ш	3		8	7	
$ _{X} $		x			Х			x			Conductance, Specific	umhos/cm	0	0	0	9	5		1	4	1		0	
x		X			х			Х			Dissolved Oxygen	mg/l								8		2	0	
x											Sulfate, Dissolved (as SO4)	mg/l	0	0	9	4	6		4	5		5		
Ħ	+	1	\Box										Ĺ				Í	П						П
H	+	+	<u> </u>		\vdash			-	\vdash	\vdash								H			\dashv			H
H	+	+-	\vdash		H		_	-	-	\vdash								\vdash	$\vdash \vdash$	\dashv	\dashv			Н
	\perp	_	<u> </u>		L				igspace	igspace	·		_					Ш	Щ	ightharpoonup	\sqcup	Ш		Щ
																								į

Form VWX-15A

PLI	EAS	SE	TYF	E C)R	PF	RIN	Ţ۷	VIT	H E	3AL	LPOINT PEN								_ 10	INC	-	VIVV		\neg
			AME							NA					SW —	ID —	No			_					_
LAE	NA	ME										ON, NJ													
													CAMPLE D	^TE				·							
												MELL DEDMIT NO	SAMPLE D YR MO	ATE DA			N.I.I	I AR	CE	RT N	۷o.	Į.	wol	и US	Ξ
_	г		UPD			, 1	<u> </u>	-1	ı	٦	_	WELL PERMIT No 0 7 1 6 0 - 9	0 4 0 1	2	2	ſ	1		_	2	_		Ī		
S	ΝJ[0	8	6]	4	8			<u>3</u>	0	- 0 7 1 6 0 - 9 16	17		ـــــــ 22	ι	23	_=_1			27	ŀ		28	.
1		2						8		9		10	**												
ты	= 00	ามต	וווח	= IN	וחו	CΔ.	TEI) RI	FI C	NV I	ST	O BE OBSERVED FROM	0 1 0	4	1	0	3	0	4						
III	= 5(>n=	וטטו	11	וטו	CA	1 L		LLC	, , ,	٠.	0 B2 0B0220 . ,	MO Y	'R		M		Υ							
												SUBMIT WITH SIGNED T-VM	/X-014												D
J	F	М	Α	М	j	J	Α	s	0	N	D														R E
A	E		Р			U							LINUTO		3 A D	A B 4 E	·*cc	2		,	VAL	ΙΙΕ	:		– М
N	В	R	R	Y	N	L	G	Р	T	V	C	ANALYSIS Elev. of top of well casing with cap off	UNITS feet Msl: to		PAR	-IVIE	.,	\Box	\neg		1	Ť		^{-}T	
Х			x		- }	$_{x}$			Х			(as specified in well completion report)	nearest 0.01	7	2	1	1	0		6	9		5	1	
^-	\vdash	Ш	$\stackrel{\cap}{H}$	\dashv	十		\dashv	-	<u> </u>	\vdash	H	Elev. of original ground level	feet Msl: to								Ţ	T		_ [
X			x	_		x			X		_	(as specified in well completion report)	nearest 0.01	7	2	0	0	9	_	6	8		0	0	\dashv
	П											Depth to water table from top of casing	feet: to nearest 0.01	8	2	5	4	6		1	1		5	5	
X			X	-+	-+	Хļ		<u> </u>	X.	 	-	prior to sampling (with cap off) Depth to water table from original	feet: to	۲		J		Ť				∸┪		_	ᆌ
x			$ _{X} $			$_{x} $			X			ground level prior to sampling	nearest 0.02	7	2	0	. 1	9		1	0		0	4	ᆜ
屵	H			十	\dashv				Ė	\vdash	\vdash										ا ۽		0	0	
X				_	_			_	_	↓_	<u> </u>	Sodium, Total	mg/l as Na	8	0	2	3_	5		4	5	2	-	-+	ᅱ
X		į	$ _{x} $	Ì		Х		į	x	Ì	İ	Lead, Total	ug/l as Pb	0	1	0	5	1			3		0	_	ĸ
Ĥ	\vdash	\vdash		_					Т	Т						,				2	0		0	- 1	ĸ
X		L	X	_		X	_	_	X	↓_	<u> </u>	Zinc, Total	ug/l as Zn	0	1	0	9	2			\dashv	\dashv	╣	\dashv	~
X												Sodium, Dissolved	mg/l as Na	8	0	2	3	5		4	4	3	0	0	_
广	\vdash		Н	寸	-				T						١,	ا _م ا					اءا		0	ļ	к
X	L	L	X			X		<u> </u>	X	╄	<u> </u>	Lead, Dissolved	ug/l as Pb	0	1	0	5	1		\dashv	3	\dashv		-+	- 1
X	ł		x			Х			x			Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		2	0	·	0		к
	\vdash	\vdash	\Box	\dashv	\dashv	<u> </u>	 	\vdash	+	\top	T			_	_ _ ا	_	آ ر	_ [$ $	9	9		1	Ì
X	1_	_					$oxed{oxed}$	igspace	igspace	↓_	1_	Total Dissolved Solids	ppm	7	0	3	0	0		1	Э	9	┟─┤	\dashv	\dashv
v			x			Х			x			Color	pt-co	0	0	0	8	0			5		0		
K	\vdash	\vdash	┢	\dashv			+-	+-	Τ		t						_						₌	اء	
X			X			Х		_	X	1	_	pH	std. units	0	0	4	0	0	├	\vdash	5	\vdash	5	3	\dashv
\ \ \						X			x			Conductance, Specific	umhos/cm	0	0	0	9	5		2	8	6		0	
×	+-	+	X	$\vdash \vdash$		屵	\vdash	\vdash		+-	+			T				Γ							
X			Х			X		L	Х	$oldsymbol{\perp}$	1_	Dissolved Oxygen	mg/l	 	_	_	\vdash	 	<u> </u>	_	2	ļ-	9	0	_
												Sulfate, Dissolved (as SO4)	mg/i	0	0	9	4	6		5	5	L.	4		
K	+-	+	+	\vdash		\vdash	T	+	+	\dagger	\dagger				Ĺ	_		_							
X	L					L	$oxed{oxed}$	\perp	_	\perp	\perp	Nitrogen, Ammonia Dissolved NH3+NH4 as N	mg/l as N	0	0	6	0	8	-	-	0	ŀ÷	1	8	\dashv
-	\vdash	+	+-	\vdash		-	+	╁	+	+	+		 	\dagger	\vdash	t^-		T							
										\perp			ļ	1_		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	\vdash	
	1	T	T			Γ	Τ			T						ĺ									
		1				1		1				1			1	1		1					•		

Form VWX-15A

GROUNDWATER ANALYSIS - MONITORING WELL REPORT

PLE	ASE	TYI	PE (OR	PF	RIN	T <u>W</u>	/IT	H E	BAL	LPOINT PEN							ELI		No.).	ΜV	V-10	\neg
FACIL						 (0)								SW —	טוי	No	•							
LAB I	NAME			_						Y	ON, NJ		_											
					<u> </u>	<u> </u>	<u> </u>	<u></u>			<u></u>										-			
												SAMPLE D				N1 1		^⊏	DT 1	No.	ſ		M US	ت
	1	NJP[DES	No.	. 1		_	Г			WELL PERMIT No 0 7 1 6 1 - 7	YR MO 0 4 0 1	2	4Y 2	[1			RT I			ľ	<u> </u>	<u>" </u>
S		0	8	6	4	8		L	3	ь	- 0 7 1 6 1 - 7 16	17		22	ı ı	23	-1	_'_		27		L	 28	١
1	2						8		9		10	17									L			
THE	SCHE	EDU	LE I	ND	ICA	TED	BE	ELO	W۱	S T	O BE OBSERVED FROM	0 1 0 MO Y	[4] R			3	0 Y							
											SUBMIT WITH SIGNED T-V		•				•							
1	= м	Α	М	.1	J	Α	s	0	N	D														R E
A	Ξ Α	Р	Α	Ü	Ū	U	E	С	0	E			_						,	VAL	115	<u>.</u>		⊏ M
N	3 R	R	Y	N	L	G	Р	Τ,	٧	С	ANALYSIS Elev. of top of well casing with cap off	UNITS feet Msl: to		ZAR.		TEF		1			-0 <u>-</u> 2	<u>'</u>	\neg	
x		x			$_{x} $			$_{x}$			(as specified in well completion report)	nearest 0.01	7	2	۵ _.	1	0	_	6	3		5	1	
\vdash	+	H	\dashv	\dashv	^	一	\dashv	^	_		Elev. of original ground level	feet Msl: to												
\times		X			Х		\Box	Χ			(as specified in well completion report)	nearest 0.01	7	2	0	0	9		6	2		0	0	\dashv
							İ	V			Depth to water table from top of casing prior to sampling (with cap off)	feet: to nearest 0.01	8	2	5	4	6			5		9	4	1
X	+	Х	\dashv	-	X			X			Depth to water table from original	feet: to	Ť		<u> </u>		_					\Box		╗
x		x			х			Х			ground level prior to sampling	nearest 0.02	7	2	0	1	9			4		4	3	ᅪ
x											Sodium, Total	mg/l as Na	8	0	2	3	5		1	6	0	0	0	_
x		x			Х			X			Lead, Total	ug/l as Pb	0	1	0	5	1			6		0		<u> </u>
 	+																,		2	0		0		ĸ
X		X			Х			X	L	_	Zinc, Total	ug/l as Zn	0	1	0	9	2		2			Ů		$\stackrel{\sim}{\dashv}$
X								_	_	_	Sodium, Dissolved	mg/l as Na	8	0	2	3	5		1	8	7	0	0	\dashv
x		x			X_			x	_		Lead, Dissolved	ug/l as Pb	0	1	0	5	1			3		0	\vdash	к
$\left[\times \right]$		×			Х			Х			Zinc, Dissolved	ug/l as Zn	0	1	0	9	2		2	0		0		к
x											Total Dissolved Solids	ppm	7	0	3	0	0		1	8	2		0	_
x		x			Х			Х			Color	pt-co	0	0	0	8	o		3	0		0		
\Box	+	1	\vdash		\vdash		-			T		std. units	0	0	4	0	0			5		2	4	
×	+	X	├		X	-	<u> </u>	X	\vdash		pH							-					0	\neg
X		X	<u> </u>	_	X	_	_	X	╀	-	Conductance, Specific	umhos/cm	0	0	0	9	5		1	2	2	Ė		ㅓ
X	_	X			Х	<u> </u>		X	\vdash		Dissolved Oxygen	mg/l	-	-	 	_	_		\vdash	8	<u> .</u>	1	0	\dashv
x					<u> </u>	L_		<u> </u>		L	Sulfate, Dissolved (as SO4)	mg/i	0	0	9	4	6		2	8	<u> </u>	7		
														_					_			_		_
	\top	T	1		Γ																			
		+-	\dagger	T	\vdash	\top	T	T																
	+	+	+	\vdash	+	\dagger	\vdash	T	-	\dagger											<u> </u>			

SUMMARY OF INSPECTION LOGS

Quarter January 2004 - March 2004

Facility:

Glaze Basin Cap

Type:

Asphalt Paving

Inspections: Monthly

Required:

Monthly

Repairs/Maintenance: NA

Condition:

East edge of cap, near Quonset hut is starting to show alligatoring due to forklift

traffic. Otherwise, cap is intact with no breaks or cracks in asphalt noted.

Remarks:

This area will be addressed in the spring.

Facility:

Slip Mound Cap

Type:

Membrane with soil and

vegetative cover - mounded

Inspections:

Monthly

Required:

Monthly

Repairs/Maintenance: None

Condition:

Vegetative cover is in good condition and no erosion was noted. Protective

guardrail in good condition.

Remarks:

None.

Facility:

Nine (9) RCRA Monitoring Wells

Type:

N/A

Inspections:

Monthly

Required:

Monthly

Repairs/Maintenance: None

Condition:

All other wells in good condition.

Remarks:

Sampled MW's 1, 3, 4, 6, 9 and 10 in January. Well #5 casing stickup replaced.

SUMMARY OF INSPECTION LOGS

Quarter January 2004 - March 2004

Facility:

Seven (7) Recovery Wells

Type:

N/A

Inspections: Monthly

Required:

Monthly

Repairs/Maintenance: None

Condition:

All wells intact and secure. RW-1, not in use.

Remarks:

Pumps failed and were replaced in wells RW-2 and RW-6

Facility:

Polishing Basin

Type:

N/A - Closed

Inspections: Monthly

Required:

Monthly

Repairs/Maintenance: N/A

Condition:

Clean closed. Vegetative cover is in place, no erosion noted.

Remarks:

None.

Facility:

Tilton Pond

Type:

Earth Dike, Unlined

Inspections:

One time per day

Required:

Monthly

Repairs/Maintenance: SWMU closure delayed until Summer 2004 due to high groundwater

Condition:

Vegetative cover on berms is in good condition and no erosion was noted. No industrial waste discharge to pond since August 1992. No overtopping controls required as pond is permitted to discharge non-contact cooling water and stormwater

to surface water under NJPDES-DSW Permit #0005177.

Remarks:

As industrial wastewater no longer flows through pond, final cleaning and sampling

are planned to effect clean closure.

SUMMARY OF INSPECTION LOGS

Quarter January 2004 - March 2004

$\mathbf{F}_{\mathbf{a}}$	cil	litv	•

Sludge Disposal Area

Type: Asphalt Paving

Inspections: Monthly

Required:

No

Repairs/Maintenance: None.

Condition:

Asphalt and fence in excellent condition.

Remarks:

None

Facility:

Area of Concern

Type:

Asphalt Paving, Membrane Cap & Fence

Inspections: Monthly

Required:

No

Repairs/Maintenance: None.

Condition:

Asphalt and fence in excellent condition.

Remarks:

None

Date: 12-23-03

C:\WPDATAUFK\LTRS\DGW\INSP.LOG

DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES

CN 029 Trenton, New Jersey 08625-029

SAMPLE COLLECTION AND PRESERVATION FORM

(To be completed by sampling crew)

BACI	(GROUND			
1)	Facility Name:	Lenox China		
2)	NJPDES Number:	NJ0086487	·	
3)	Facility Address:	Tilton Road, Pomo	ona, NJ 08240	
4)	Owner's Name:	Lenox China		
5)	Owner's Address:	Tilton Road, Pomo	ona, NJ 08240	
SAMI	PLING PLAN			
6)	Has a sampling and a stipulated under N. Yes X or No	J.A.C. 7:14A-	been developed for 6.9?	this facility as
7)	If yes, has the sampy Yes X or No	-	en approved by the D	epartment?
8)	If the sampling plan with these submitted		n submitted to the D	epartment, attach
SAMI	PLE COLLECTION			
9)	Sample Date/Time: 01	/22/04_		
10)	Sampling Personnel(Name/Title)	Affiliation	Phone
	Robyn Berner, Hydrogeolog	ist	Gannett Fleming, Inc.	609-279-9140
	Suzy Kelly, Environmental E	Engineer	Gannett Fleming, Inc.	609-279-9140

11)	Weather conditions at the time of sampling: Cloudy, 30 degrees F
12)	Is there a designated level of protection, and if so, indicate: A B C or D X
STAT	IC WATER LEVEL MEASUREMENT AND WELL EVACUATION
13)	What method was utilized to determine the static water level? Electrical (m-scope) X Stainless Steel Tape Sonic or Other: (explain)
14)	Measuring Device Precise to: 0.01 feet
15)	Model Number: 101 Manufacturer: Solinst
16)	Was the water level indicator deconned between wells? Yes_X or No
17)	Describe the decontamination procedure: Deionized water rinse, wipe with paper towel, final deionized water rinse, air dry
18)	Wells are to be purged three to five times prior to sampling. If wells are not purged as stated above, explain and justify the exact purge method used.
19)	Method used for well evacuation: Pump_X or Bailer
20)	If bailed to evacuate, what are the dimensions of the bailer? N/A
21)	What is the volume capacity of the bailer? <u>N/A</u>
22)	Pump Type: Submersible Bladder Gas Piston Gas Displacement or Other X Explain: Peristaltic Pump
23)	Pump Model Number / Flow Rate: Randolph Pump Model 750/1-6 gpm
24)	Pump manufacturer: Randolph-Austin
25)	Describe decontamination method used to clean pump between wells: None - A new piece of tubing was used at each monitoring well

\	_			:		Car	aoline I	Powered	gene:	rator		
26)	Power Gasoli	sour ne F	ower	ed co	ompre	essor_	Propa	ane Powe	ered 1	Engine	Х	
27)	Was the	s, f	ield	ne trand	trip	blar	d in the	e same s bailers	vehic: s?	le as th	e samp	le
28)	Refer wells					chart	t for vo	olume c	apaci [.]	ties for	vario	us
			Casi	ing D	iamet	er	×.	G	allon	s/Linear	Foot	
			<u>cab.</u>	2						0.16		
				4	,					0.65		
				6	17					1.47		
				8				•		2.61		
29)	Comple	ete t	the h	oelow	cha:	rt re	garding	evacua	tion	measuren	nents.	
	Please	e not	e tl	ne fo	llow	ing al	bbrevia	tions:		_		
	TOC=e	Levat	cion	of to	op o	f cas	ing; TD	W=total	dept	h of wel	.l from	l
	from t	cop o	of ca	asing	; DTI	W=dis	tance to	o water	from	top of	casing	T ;
	# of b	oail	vol	s=num]	ber (of ba	il volu	mes. T	OC, D	TW, and	TDW	
	Should	d be	meas	sured	and,	or c	alculat	ed to t	ne ne	arest 0.	01 100	C.
	Also 1	note	tha	t if .	a me	chanı	cal pum	p is us	ea Io	r purgir	19, a bail	or
	indica	ate 1	the 1	total	min	utes (or pump	ing tim	e per	ow. If	a Dali	.er
	is use	ed fo	or pi	urgin	g, 11	ndica	te the	cotal n	umber	of bail	. VOI uii	ics.
	Attacl	n ado	diti	onal			necess LE QAQC		SE 3A			•
				l	Į.	gal.	Amount	Amount	# of	Minutes	Time	Time
	Permit Wners	TOC	DTW	TOC-	TDW	l	of H2O	of H2O	Bail	pumping	purge	Sample
Well				DTW		Lin.	in	Purged	Vols	time	comp-	Col-
						ft.	Casing				lete	lected
	<u> </u>				-							
-					 -							

Table QAQC1 State of New Jersey Department of Environmental Protection Division of Water Resources Groundwater Sampling Data Collected January 22, 2004

Well Permit Number	Owners Well Number	TOC (Feet)	DTW (Feet)	TOC-DTW (Feet)	TDW (Feet)	Gallons per linear foot	Amount of Water in Casing (gallons)	Amount of Water Purged (gallons)	Number of Bail Volumes	Minutes pumping time	Time purge completed	Time sample collected
36-03025-2	MW-1	69.28	10.01	59.27	29.75	0.65	12.8	40	-	10	11:39	11:39
36-03027-9	MW-3	67.09	8.64	58.45	30.40	0.65	14.1	43	-	13	12:24	12:24
36-03119-4	MW-4	66.98	5.98	61.00	26.80	0.65	13.5	41	-	10	12:04	12:04
36-02913-0	MW-5	, 64.17	7.63	56.54	17.95	0.16	1.7	Not Sampled	_	-	-	-
36-03270-1	MW-6	65.08	7.38	57.70	30.75	0.65	15.2	46	-	12	10:04	10:04
36-07160-9	MW-9	69.51	11.55	57.96	31.15	0.65	12.7	40	-	10	11:17	11:17
36-07161-7	MW-10	63.51	5.94	57.57	29.30	0.65	15.2	46	<u>-</u>	10	10:33	10:33

SAMPLE COLLECTION AND PRESERVATION

30)	Matrices Sampled: Aqueous: Potable Well Monitoring WellX
	Surface Water Leachate Other Nonaqueous: Soil Sediment Other
31)	Dedicated Hose: Yes X or No
32)	Hose Construction: PVC Teflon Tygon Butyl Other_ X Explain: <u>Drinking water grade polyethylene</u>
33)	Sample Collection: (Time of collection for each well/sample should be indicated on the back of this page) See table QAQC1 on page 3A
	A) Bailer-construction: Teflon Stainless Steel PVC HDPE X B) Beacon Bomb Sampler Size:oz. C) Other Explain:
34)	Lines used to lower bailer: Stainless Steel Other 100% poly
35)	Are dedicated bailers used for each well? Yes X or No
36)	Are bailers: Laboratory cleaned Laboratory Name Field Cleaned Describe method:
	Disposable bailers used only once then discarded.
37)	Prior to use, are bailers, sample bottles, hoses, etc. Kept clean i.e., not placed in direct contact with ground, etc.: Yes X or No
38)	Are sample bottles supplied by laboratory? Yes X or No
39)	Are sample preservation instructions supplied by laboratory? Yes X or No
40)	Are sample preservatives supplied by laboratory? Yes X or No

41) Sample Preservation:

Constituent	Teflon top	Head	Refrig-	Acidified	Alkanized	Bottles
	in contact	Space	erated			
	with sample			ļ		
Volatile Organics	Yes	No	Yes	Yes	N/A	N/A
TOX	N/A	N/A	N/A	N/A	N/A	N/A
Extractable Organics	N/A	N/A	N/A	N/A	N/A	N/A
Metals	N/A	N/A	Yes	Yes	N/A	N/A
Cyanide	N/A	N/A	N/A	N/A	N/A	N/A_
Phenols	N/A	N/A	N/A	N/A	N/A	N/A
Biological	N/A	N/A	N/A	N/A	N/A	N/A

42)	Indicate below any other constituents to be analyzed and their forms of preservation: TDS, TSS, color, sulfate, ammonia-nitrogen (acidified) -
	all refrigerated
43)	Were samples for metals analysis filtered in field? Yes_Xor No
44)	Were samples for metals analysis filtered in laboratory? Yes or No_ X
4 5)	Were field blanks taken? Yes X or No
46)	Were trip blanks taken? Yes X or No
47)	What parameters/analysis were performed on field and trip blanks? Volatile Organics X (FB,TB) Semi-volatile Pesticides PCBs Metals X (FB) Other TDS, TSS, color, amm-n, sulfate
48)	Prior to sampling, was an equipment blank performed? YesNoX Sampling equipment is dedicated per well.
49)	Prior to sampling each well, are disposable gloves worn? Yes X or No
50)	If yes, are the gloves changed between wells? Yes X or No

CHAIN OF CUSTODY													
51) Laboratory Na	me/Certificatio	on Number	Accutest /	12129									
52) Laboratory Ad	ldress <u>2235 Route</u>	e 130, Dayton, Ne	w Jersey 0	8810									
53) Laboratory re	eceipt date and	time_01/22/04	, 16:25										
54) Attach Chain of Custody: Yes X or No													
Sample Number	Relinquished by	Received by	Time	Date	Reason for change of custody								
MW-1, MW-3, MW-4, MW-6, MW-9, MW-10, MW-2, FB, T		Accutest	16:25	01/22/04	Relinquished to lab								
AUTHENTICATION I certify under familiar with the my inquiry of the information, I be complete and meet and 6.1 through 6 submitting false imprisonment.	information copse individuals elieve the subset the descript	ontained in immediately omitted infocion specifice that ther	this re y responermation ed in Ne are s:	port, an sible fo is trud J.J.A.C. ignifican	nd that based on or obtaining the e, accurate and 7:14A-2.5(a)10, nt penalties for								
<u>Sampler</u>													
Name/Title (print	ed) Robyn Ber	rner, Hydrogeolog	gist										
Signature _ Roby													
Company Name and	Address <u>Ga</u>	nnett Fleming, 20	02 Wall Stre	eet, Princeto	on, NJ 08540								

Notes:

- The sampling team may use their own reporting forms only if the forms contain all the information required in this sample collection and preservation form.
- 2. If any of the items within this sample collection and preservation form vary for different monitor wells, the information must be documented within this form or as attachments to this form.

LABORATORY SAMPLE CHAIN OF CUSTODY/CHRONICLE FOR NJPDES COMPLIANCE MONITORING

Relinquisher of sample: (please print)
Name: Robyn Berner Signature: Robyn Bina
Company: <u>Gannett Fleming</u> Title: <u>Hydrogeologist</u>
Title: Hydrogeologist
Date: 1-22-09 Time: 10-25
Laboratory sample recipient: (please print)
Name: CRAIG PARILO Signature Signature
Laboratory Name: ACCUTEST
NJDEP Laboratory Cert. No Title: S.M. TECH
Date: 1-72-04 Time: (6+5)
Did samples arrive cold? Yes or No
Were the samples properly preserved? Yes / or No
If no, which analyses will be affected:
<u> </u>
Did sample for the analyses of volatile organics contain
headspace? Yes or No
was the septum in place with the TFE side down? Yes \checkmark No

QAQC-B Page 2 of 3

Sample Preparation Chemist

		Name please print	Signature	Date
. 1.	Base/Neutrals			
2.				-
3.				_
J. 4.	Herbicides			_
5.	PCB's			<u> </u>
	Metals			<u> </u>
6.	Other			
7.				
8.	other			
9.	Other			
		Analyst		-
		Name please print	Signature	Date
1.	Base/Neutrals		· · · · · · · · · · · · · · · · · · ·	
2.	Acids			
3.	Pesticides			·
4.	Herbicides	<u></u>		
5.	PCB's	·		
6.	M etals	·		2/11/04
7.	Volatiles	Cindy Xu	1	2/11/04
8.	TOC			
9.	TOX			
10.	Phenols (total)			•
11.	Cyanide (total)			
12.	Other			-
13.	Other			
14.	Other			
15.	Other			

QAQC-B Page 2 of 3

Sample Preparation Chemist

		Name please print	Signature	Date
1.	Base/Neutrals			
2.	Acids			
3.	Pesticides			 .
4.	Herbicides			
5.	PCB s			:
6.	Metals		·	
7.	Other	<u> </u>		
8.	Other			
9.	Other			
		Analy	<u>st</u>	
		Name please print	Signature	Date
1.	Base/Neutrals	•		
2.	Acids		·	
3.	Pesticides			
4.	Herbicides			· · · · · · · · · · · · · · · · · · ·
5.	PCB 's			110
6.	Metals	· Nancy Duan		
7.	Volatiles	<u> </u>		
8.	TOC			
9.	TOX			
10.	Phenols (total)			•
11.	Cyanide (total)			
12.	Other			
13.	other			
14.	Other			
15.	Other			

QAQC-B Page 2 of 3

Sample Preparation Chemist

		Name please print	Signature	Date
1.	Base/Neutrals		•	· · ·
2.	Acids	<u> </u>		
3.	Pesticides			<u> </u>
4.	Herbicides			
5.	PCB s			
6.	Metals			
7.	Other			
8.	Other			
9.	Other			
		Analy	vst:	_
		•	signature	Date
		Name please print		
1.	Base/Neutrals			
2.	Acids	<u>:</u>		
3.	Pesticides			
4.	Herbicides			
5.	PCB 's			
6.	Metals			
7.	Volatiles			
8.	TOC			<u> </u>
9.	TOX Color	Jaura Earomirski	Laura Earonniski	1.22.05
10.	Phenols (total)			•
11.	Cyanide (total)			
12.	other TV	Hilly WAlker	milled Walker	1.26.04-
	other TSS	Milly worker	Mlbs tally	1.26.08
	other Say	HarkTkacryk	Africa -	1.27.04
15.	other Annonia	J// Nuber	gillruber girl Lubin	2-2-04

times:	of the sample extractions and/or analyses exceed h	olding
If yes,	which analyses will be affected:	
If re-e reason with th	extraction and/or re-analysis is necessary, indica and attach another Laboratory Chain of Custody/Chr e appropriate signatures and dates.	te the onicle
Quality	Assurance Officer	
Name (F	Special Signature Day Special Signature	18 Feb 8 4

LABORATORY AUTHENTICATION STATEMENT FOR NJPDES COMPLIANCE MONITORING

I certify under penalty of law, where applicable, this laboratory meets the Laboratory Performance Standards and Quality control requirements specified in N.J.A.C. 7:18, 40 CFR 136 for Water and Wastewater Analyses and SW 846 for Solid Waste Analyses. I have personally examined and am familiar with the information contained in this report, and that, based on my inquiry of those individuals immediately responsible for obtaining the information. I believe the submitted information is true, accurate, complete, and meets the standards specified in N.J.A.C. 7:18, 40 CFR 136, and/or SW 846. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment.

Laboratory Manager (as defined in N.J.A.C. 7:18)

MM MACCUTEST.

CHAIN OF CUSTODY

2235 Route 130, Dayton NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/3480 www.sccutest.com

<u> </u>	
FED-EX Tracking #	Bottle Order Control #
Accutest Quote #	Accutest Job # N 58072_

																		Military et	vvv:		(vice-mi				77	<u>ں ر</u>	0 7	2-
	Client / Reporting Information							Pr	oject Inf	ormat	ion											Reque	ested Ar	alysis	2023000000			Matrix Codes
Company Na				Project							، س						ĺ											DW - Ortnking Water
Address	bannet Fleming			-					VJP								1				[ł	!	ا ت	1 '	1 1		GW - Ground Water
nuuress .	202 Wall 5t.			Street		T	ilh	חס	Ro	١.							0.0	H	_ :			ł		₹	'			WW - Water
City Pa	nce ton State NT Robyn Berner	Zip	,,	City	Poi				Stat	e	سيس						PAUG []	PP. CI STARS CI MIBE	MS D				ď	/u				SW - Surface Water
Prolect Conta	oct -	0839 E-mail	0	Project /	#						<i>N</i>							STAR	[និក្រ		,		/ 1/	12				SO - Soil
	Robyn Berner	C-man		_ I Toject I		42	43	0.	001	,				·			602 C	1 1 1 2 2 3	PPL CO			F	En	Pb	'			SL - Sludge OI - Oil
hone #	(100-1-0-0140			Fax#					,								2021 194 🗆		00		To I	70	190	7		[]	ک	LIQ - Other Liquid
Sampler's Na	609-279-9140			Client P	urchase On	ier#										_		p d		≥	H	Ive	0	Ive	ate		5	AIR - Air
· 	Robyn Berner Fleid ID / Point of Collection																S I	624 C	625 CI BN CI	u	a	50	2	asi	4	0	15	SOL - Other Solid
Accutest Sample #	Fleld ID / Point of Collection	SUMMA	# -		Collection	<u> </u>	-			<u> </u>	_~	mber (of pre	serve	d Bott			g.,	6270 C	Amm	70+	115	701	0.0	108	0100	0	WP - Wipe
	·	MEOH Va	##	Date	Time	Sampk By	⁶⁰ M	latrix	# of bottles	ā	ME OH	19103	E\$30	NONE	Marks	BCOR B	82 H	826 18A	827 ABN	4	<u> </u>	7			~	~	, ,	LAB USE ONLY
- <i> F</i>	$m\omega-1$		1	1/22	11:39	RE	3 6	ω	9	3		2	1	3			×			χ	X	X	×	×	×	×	×	AMET 11, WC30,
- 26	mw-3		\perp	1/22	12:24				5			2		3							į		х	χ	×	×	×	423
- 36	mw-Y			1/22	12:04				5			2		3									*	х	×	×	×	AMETII, WC30
- 4F	mw-6			1/22	10:04				5			2		3									×	Х	Ж	×	>	423
- 5F	mw-9		T	1/22	11:17	П	T		6			2	-	3						×			×	×	×	×	×	
- 6F	mw-10			1/22	10:33		\top		8	3		2		3			×			_	¥	×	×	×	x	×	× ×	
7F	mw-2			1/22	10:33	П	\top	П	8	3		7	П	3	1		×				×	×	×	×	×	×	×	
- 86	FB			1/22	12:00		L	Q	9	2		2	,	3		-	×			×			×	×	×	×	/	
- 9	TB Filled ifigley @ 0070		1	1/22	-	\vdash		a		2			Ħ		\dashv	+	×			$\widehat{}$	×	-			$\hat{}$	_	$\frac{1}{2}$	
	9 11000		\dagger	106			1-	7	-			_			-+	+			-						\dashv	\rightarrow	\dashv	
	Turnaround Time (Business Days)							i	Dala De	livera	ble in	forma	ution					and the same						- I	- da			
2 Std. 15 F	Business Days Approved By: / D.				Commer						FULI	L CLP	,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
🗍 10 Day R				1	☐ Commer						NYA							4	PHA	, 2.	torr	75 E	3 + 6	- a	<u>ind</u>	512	900	tures
⊐ 5 Day RU				1/	NJ Redu	ced					NYA		-	ry B												ν		1
3 Day EA] NJFu⊪]Other						State							-										
□ 2 Day EA □ 1 Day EA					a Ouler					×	≇ DD	Form	1at		-			<u> </u>										
⊐ F Day EN □ Other	MERGENCY		_		Comm	ercial *	'A" - I	Dec	ilte Ool	u								1										1
Emergency	& Rush T/A data available VIA LabLink		_																									
	Sampler			Sample C	ustody mus	be doo	cumen	led b	elow ea	ch tim	e san	ipies (chang	e pos	sessio	n, includi	na couri	er delive	ery 🕬	20000	200			********	(e manting		S CONTRACTOR OF THE SECOND
		JE 16 . 4 b	Recei								Relin	quishe	ed by S	ample	r.				. 590	Date	Time:	F	eceived l	onaccico by:	20000			
Palloquichad .		122/04	1	nay	<i>≫</i> 6.,/	33/24	ام	<u> </u>			2									\perp] 2	!					ľ
remiquisnea by:		Date Time:	Kecei	vededi	,	1				ı	Relin	quishe	ed by:							Date	Time:	R	leceived I	by:				
definquished by:		Date Time:	3	ved by:	··········					_	4	.4. ^	-1.00									4						
		Zenc Inne.	, vecer	ecu by.							Cust	ody Se	12K #					Prese	rved whe	re applica	able		On Ice		(/	Cac	oler Tem	3.4. 2
																									- 1		117,0	(2,1.7

I. General Inform Client Name: Let		na, NJ		Project No.: 424	30.001
Project Name: N	JPDES Quarterly	Monitoring	Sampled By: <u>RB/SK</u>		
Well No.: MW-1				Well Use: Monite	oring
Sample ID: MW-1 Sample Date: 1/2			22/04	Sample Time: 11	:39
II. Well Informat	ion:		Well Diameter:	<u>4</u> inches	
Static Depth to V	Vater : <u>10.01</u> ft. b	elow m.p.	Measuring Point (m.p.): PVC Casing		
Total Well Depti	ı: <u>29.75</u> ft. below	m.p.	Measuring Point	t (m.p.): <u>PVC Casi</u>	ng
Δ h: 19.74 feet			Volume of Stand	ling Water: <u>12.83</u>	gallons
Volume to be rea	noved: 38.49 gal	lons	Actual Volume	-emoved: <u>40.00</u> gal	lons
III. Sampling Information: Purging Method: ☐ Peristaltic Pump ☐ Bailer			☐ Submersible Pump ☐ Other		
Well Drawdown/Recovery:			Poor	Other	
•		Purge Time: 10 min.			
Pump Flow Rate: 4.0 gpm				-	•
Purge Chemistry	y:	<u> </u>			
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
11:31	10	4.76	0.088	9.5	11.4
11:34	20	4.92	0.094	9.3	11.8 11.9
11:36	30 40	4.84	0.095 0.096	9.6	11.9
11:38		4.50	0.070	7.0	
Depth to water a	ifter purge: 10.05	5 ft. below m.p.		Time: <u>11:39</u>	
Depth to water prior to sampling: 10.05 ft. below m			n.p. Time: <u>11:39</u>		
Sample Appearance: Turbid S		lightly Turbid	⊠ Clear □	Other	
Sample Odor:	⊠ None	e 🗌 0	ther		
Metals:	ters: Voc, Metals.	, Color, TDS/TSS, , ⊠ Filtered	Amm-N, Sulfate Date Shippe	☑ Unfiltere	ed
Laboratory: Acc	utest		Date Snippe	u. 1122/04	

I. General Inforn Client Name: <u>Le</u> i		na, NJ		Project No.: <u>424</u>	<u>30.001</u>	
Project Name: <u>N</u>	JPDES Quarterly	Monitoring	Sampled By: <u>RB/SK</u>			
Well No.: MW-3				Well Use: Monit	oring	
Sample ID: MW-3 Sample Date: 1/2			22/04	Sample Time: 12	:24	
II. Well Informate PID Reading: -	tion:		Well Diameter:	4 inches		
Static Depth to V	Water : <u>8.64</u> ft. bel	low m.p.	Measuring Point (m.p.): PVC Casing			
Total Well Deptl	n: 30.40 ft. below	m.p.	Measuring Point	t (m.p.): <u>PVC Casi</u>	<u>ng</u>	
Δ h: 21.76 feet			Volume of Stand	ling Water: <u>14.14</u>	gallons	
Volume to be rea	noved: <u>42.42</u> gall	ons	Actual Volume	r emoved: <u>43.00</u> gal	lons	
III. Sampling Inj Purging Method ☑ Peristaltic Pu ☐ Bailer	:		Submersible Other	Pump	-	
Well Drawdown	/Recovery:	⊠ Good	Poor	Other		
Pump Flow Rate: 3.3 gpm Purge Chemistry:				Purge Time:	<u>13</u> min.	
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
12:14	10	5.32	0.271	6.3	14.6	
12:16	20	5.35	0.293	6.3	13.6	
12:19	30	5.37	0.250	6.5	13.5	
12:21	40	5.42	0.263	6.7	13.9	
. Depth to water a	after purge: <u>8.75</u>	ft. below m.p.		Time: 12:24		
Depth to water p	orior to sampling	: 8.75 ft. below m.		Time: <u>12:24</u>		
Sample Appeara	ample Appearance: 🔲 Turbid 🔲 S		lightly Turbid	Clear	Other	
Sample Odor:	⊠ None	: C	other			
Metals:	ters: <u>Metals, Colo</u>	<u>r, TDS/TSS, Sulfat</u> ⊠ Filtered		☑ Unfilter	ed	
Laboratory: Acq	cutest	<u>St</u> Date Shipped: <u>1/22/04</u>				

Laboratory: Accutest

I. General Informat Client Name: <u>Lenox</u>		na, NJ		Project No.: 4243	<u>30.001</u>	
Project Name: NJP			Sampled By: <u>RB/SK</u> Well Use: <u>Monitoring</u>			
 Well No.: <u>MW-4</u>						
Sample ID: MW-4 Sample Date: 1/2						
Sample 1D. Mill		5 p.: 2 <u></u>			_	
II. Well Information: PID Reading: <u>-</u>			Well Diameter: 4 inches			
Static Depth to Wa	ter: <u>5.98</u> ft. be	elow m.p.	Measuring Point (m.p.): PVC Casing			
Total Well Depth: 2	2 <u>6.80</u> ft. below	/ m.p.	Measuring Point	(m.p.): PVC Casin	<u>1g</u>	
Δ h: 20.82 feet			Volume of Standing Water: 13.53 gallons Actual Volume removed: 41.00 gallons			
Volume to be remo	ved: 40.59 ga	ilons				
III. Sampling Information: Purging Method: ☑ Peristaltic Pump ☐ Bailer			Submersible Pump Other Poor Other			
Well Drawdown/Ro	-	⊠ Good	T 001		— 10 main	
Pump Flow Rate: 4.1 gpm			Purge Time: 1	<u>10</u> mm.		
Purge Chemistry:						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
11:56	10	5.90	0.237	10.6	12.6	
11:58	20	5.81	0.235	9.3	10.9	
12:00	30	5.64	0.224	9.1	11.1 11.5	
12:02	40	3.73	0.221	7.1	11.5	
Depth to water after	er purge: <u>6.05</u>	ft. below m.p.	<u> </u>	Time: 12:04		
Depth to water pri	or to samplin	g: <u>6.05</u> ft. below m. ₁	p.	Time: <u>12:04</u>		
Sample Appearance	e: Turk	oid S	lightly Turbid	∑ Clear □	Other	
Sample Odor:	⊠ Non	e 🔲 C	other			
IV. Sample Analyse Sample Parameter Metals:	s: Metals, Col	or, TDS/TSS, Sulfat ☑ Filtered		∑ Unfiltere	ed	
Laboratory: Accutest		Date Shipped: <u>1/22/04</u>				

I. General Inform Client Name: <u>Let</u>		na, NJ		Project No.: <u>424</u> .	30.001	
Project Name: N	JPDES Quarterly	Monitoring	Sampled By: RB/SK			
Well No.: MW-6				Well Use: Monito	oring	
Sample ID: MW-6 Sample Date: 1/2			<u>22/04</u>	Sample Time: 10	:04	
II. Well Informat	ion:		Well Diameter:	4_inches		
Static Depth to V	Vater : <u>7.38</u> ft. be	elow m.p.	Measuring Point (m.p.): PVC Casing			
Total Well Depth	n: 30.75 ft. below	m.p.	Measuring Point	t (m.p.): <u>PVC Casi</u> i	ng	
Δ h: 23.37 feet		•	Volume of Stand	ling Water: 15.19	gallons	
Volume to be rea	moved: 45 57 gal	lons		emoved: 46.00 gal	,	
volume to be let	110veu. <u>45.57</u> gai	TOUS	rictum volume i	<u></u> g		
III. Sampling Inf Purging Method Peristaltic Pu	:		Submersible	Pump		
☐ Bailer			Other			
Well Drawdown	Recovery:	⊠ Good	Poor	Other	_	
Pump Flow Rate: 3.8 gpm			Purge Time: 12 min.			
Purge Chemistry						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
9:54	10	3.76	0.097	9.2	13.8	
9:56	20	3.83	0.115	9.0	14.6	
9:59	30	3.85	0.128	8.5	15.0	
10:01	40	3.87	0.141	8.2	15.2	
	-					
Depth to water a		ft. below m.p. g: <u>7.42</u> ft. below m.j	n	Time: 10:04 Time: 10:04		
•	_			Clear	Other	
. ,-						
Sample Odor:	⊠ None	e LIC	Other			
IV. Sample Anal Sample Parame Metals:		or, TDS/TSS, Sulfat ⊠ Filtered		∑ Unfilter	ed	
Laboratory: Accutest			Date Shipped : <u>1/22/04</u>			

I. General Informati					
Client Name: Lenox	China, Pomo	ona, NJ	Project No. : <u>42430.001</u>		
Project Name: NJPI	DES Quarterly	y Monitoring	Sampled By: <u>RB/SK</u> Well Use: <u>Monitoring</u>		
Well No.: <u>MW-9</u> `					
Sample ID: <u>MW-9</u> Sample Date: <u>1</u>			22/04	Sample Time: 11	:17 ✓
II. Well Information PID Reading: -	r:		Well Diameter:	4 inches	
Static Depth to Wat	ter: <u>11.55</u> ft. !	below m.p.	Measuring Point (m.p.): PVC Casing		
Total Well Depth: 3	1.15 ft. belov	v m.p.	Measuring Point	t (m.p.): <u>PVC Casi</u>	ng
Δ h: 19.60 feet√			Volume of Stand	ding Water: 12.74	gallons
Volume to be remov	v ed: <u>38.22</u> ga	llons	Actual Volume	removed: <u>40.00</u> gal	llons 🗸
III. Sampling Inform Purging Method: Peristaltic Pump			Submersible	•	
☐ Bailer			Other		
Well Drawdown/Re	ecovery:	⊠ Good	Poor	Other	
Pump Flow Rate: 4.0 gpm			Purge Time: 10 min.		
Purge Chemistry:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
11:10	10	6.05	0.424	0.8	15.8
11:12	20	5.72	0.322	3.0	16.5 16.8
11:14 11:16	30 40	5.60	0.286	2.9	16.9
Depth to water afte	er purge: 11.6	50 ft. below m.p.		Time: <u>11:17</u>	<u>,</u>
Depth to water price			ı.p.	Time: <u>11:17</u> 🗸	
				Other	
Sample Odor:	Non	ne 🔲 C	Other		
IV. Sample Analyse. Sample Parameters Metals:		or, TDS/TSS, Sulfat ☑ Filtered	te, Amm-N	□ Unfilter	ed
Laboratory: Accutest			Date Shipped : <u>1/22/04</u>		

I. General Informa Client Name: Leng		na, NJ		Project No.: 424	<u>30.001</u>
Project Name: NJ			Sampled By: RB/SK		
Well No.: <u>MW-10</u>		-	Well Use: Monitoring		
Sample ID: MW-1	<u>0/MW-2</u>	Sample Date: 1/2	<u>22/04</u>	Sample Time: 10	:33
II. Well Information PID Reading: -	on:		Well Diameter:	<u>1</u> inches	
Static Depth to W	ater: 5.94 ft. be	low m.p.	Measuring Point (m.p.): PVC Casing		
Total Well Depth:			Measuring Point	t (m.p.): <u>PVC Casi</u>	ng
Δ h: 23.36 feet		•	Volume of Stand	ling Water: <u>15.18</u>	gallons
Volume to be rem	oved: 45 54 gal	lons		removed: 46.00 gal	÷.
volume to be rem	0veu. <u>45.54</u> gai	10113	Tictum volume i	<u></u> g	
III. Sampling Info Purging Method: Peristaltic Pur			Submersible Other	Pump	
Bailer \\ \tag{\figstar}			Poor	Other	
Well Drawdown/I	·	⊠ Good	1 00i		
Pump Flow Rate: 4.6 gpm				Purge Time:	<u>10</u> mm.
Purge Chemistry:		,			
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
10:25	10	5.14	0.074	10.4	13.9
10:27	20	5.18	0.085	10.4	15.0
10:29	30 40	5.21	0.106 0.122	9.0 8.1	15.5 15.7
10:31	40	3.24	0.122	0.1	
					
Depth to water af	ter purge: <u>5.98</u>	ft. below m.p.		Time: <u>10:33</u>	
Depth to water pr	cior to sampling	g: <u>5.98</u> ft. below m.:	p.	Time: $10:33^{-1}$	
Sample Appearar	nce: 🔲 Turb	oid S	lightly Turbid	⊠ Clear □	Other
Sample Odor:	None	e 🔲 C	Other		
Metals:	ers: <u>Voc, Metals</u>	s, Color, TDS/TSS, ⊠ Filtered		☑ Unfilter	ed
Laboratory: Accutest Date Shipped: 1/22/04				•	

LENOX CHINA A DIVISION OF LENOX, INC. POMONA, NEW JERSEY

POMONA DGW AND TCE
QUARTERLY GROUNDWATER
MONITORING REPORT
JANUARY 2004 MONITORING ROUND

PROJECT #42430.001/.002 MARCH 2004

Office Location:

GANNETT FLEMING

202 Wall Street

Princeton, New Jersey 08540

Office Contacts:

James M. Barish, CPG

Robyn Berner

(609) 279-9140

CONTENTS

1.0 INTRODUCTION	1
2.0 DETECTION MONITORING PROGRAM (DGW)	2
3.0 GAC TREATMENT SYSTEM MONITORING PROGRAM (DGW)	4
4.0 DEPTH TO WATER, WATER LEVEL ELEVATIONS, AND TREATMENT SYSTE FLOW MONITORING (DGW)	
4.1 Depth to Water and Water Level Elevations	6
4.2 Treatment System Flow Monitoring	6
5.0 TCE MONITORING PROGRAM (MOA)	7
5.1 Background	7
5.2 Field Procedures	7
5.3 Groundwater Monitoring Results	8
6.0 SOLID WASTE MANAGEMENT UNIT NO. 2 AND AREA OF CONCERN GROUNDWATER MONITORING PROGRAM (MOA)	11
7.0 CLASSIFICATION EXCEPTION AREA / STATISTICAL ANALYSIS PROGRAM (MOA)	12
8.0 RESIDENTIAL WELL SAMPLING	14

FIGURES

No.	Description
1	Groundwater Flow Map – January 20, 2004
2	Groundwater Flow Map – January 20, 2004 – Shallow Wells
3	Groundwater Flow Map – January 20, 2004 – Deep Wells
4	Extent of Trichloroethene in Groundwater – January 20-22, 2004
5	Residential Well Sampling Location Map

APPENDICES

 $APPENDIX\ A-Groundwater\ Sampling\ Logs$

 $APPENDIX \ B-Groundwater \ Contour \ Map \ Report \ Form$

APPENDIX C – Laboratory Data Reports (Bound Separately)

1.0 INTRODUCTION

This report summarizes the results of the groundwater monitoring programs that satisfy the requirements outlined in Lenox's NJPDES Discharge to Groundwater (DGW) permit (permit number NJ0086487) and the Memorandum of Agreement (MOA) between Lenox and NJDEP. All groundwater monitoring and analytical procedures were conducted in accordance with the protocols outlined in the most recently revised Groundwater Sampling and Analysis Plan (GWSAP) and Supplemental Groundwater Sampling and Analysis Plan (SGWSAP) approved by NJDEP.

This report presents the DGW and MOA sampling program data in a single document. The report components are as follows:

- Detection Monitoring Program
- GAC Treatment System Monitoring Program
- Depth to Water and Water Level Elevation Measurements
- TCE Monitoring Program
- SWMU No. 2 and Area of Concern Monitoring Program
- Classification Exception Area/Statistical Analysis Program
- Residential Well Sampling

The first three items satisfy the DGW permit monitoring requirements while the remaining items fulfill the requirements of the MOA.

2.0 DETECTION MONITORING PROGRAM (DGW)

The quarterly detection monitoring program is covered by the GWSAP and consists of the following for the first quarter:

- Sample monitoring wells MW-1, MW-3, MW-4, MW-6, MW-9 and MW-10.
- All samples are analyzed for total suspended solids (TSS), total dissolved solids (TDS), color, sulfate, and total and dissolved lead, zinc and sodium. Samples from MW-1 and MW-10 are also analyzed for total and dissolved iron. MW-1 and MW-9 are also analyzed for ammonia-nitrogen.
- Specific conductivity, pH, temperature and dissolved oxygen are measured in the field during purging and prior to sample collection.

Table 1, Section 2 summarizes the results of the current sampling event. The full laboratory data report is provided in Appendix C. Tables 2 through 7 summarize historical sampling results for each well since 1996.

The January 2004 monitoring results are summarized below:

- Total lead concentrations ranged from less than the laboratory reporting limit of 3.0 micrograms per liter (μg/l) to 24.9 μg/l, with the highest concentration in the sample from MW-3. Dissolved lead concentrations ranged from less than the laboratory reporting limit of 3.0 μg/l to 13.2 μg/l, with the highest concentration in the sample from MW-3.
- Total zinc concentrations ranged from less than the laboratory reporting limit of 20 μ g/l to 3,420 μ g/l, with the highest concentration in the sample from MW-3. Dissolved zinc concentrations ranged from less than the laboratory reporting limit of 20 μ g/l to 3,430 μ g/l, with the highest concentration also in the sample from MW-3.

- Total sodium concentrations ranged from 9,760 μg/l to 45,200 μg/l, with the highest concentration in the sample from MW-9. Dissolved sodium concentrations ranged from 9,910 μg/l to 44,300 μg/l, with the highest concentration in the sample from MW-9.
- Iron was analyzed only in the samples from MW-1 and MW-10. Total iron was detected at concentrations of 669 μg/l in MW-1 and 1,780 μg/l in MW-10. Dissolved iron was not detected in either sample at concentrations exceeding the 100 μg/l laboratory reporting limit.
- Sulfate concentrations ranged from less than the laboratory reporting limit of 20 mg/l to 69.0 mg/l, with the highest concentration in the sample from MW-4.
- TDS concentrations ranged from 79 milligrams per liter (mg/l) to 199 mg/l, with the highest concentration in the sample from MW-9. TSS concentrations ranged from less than the laboratory reporting limit of 4.0 mg/l to 96.0 mg/l, with the highest concentrations in the sample from MW-10.
- Color concentrations ranged from less than the reporting limit of 5 color units to 35 color units (in MW-1).
- Ammonia-nitrogen concentrations were less than the 0.10 mg/l laboratory reporting limit in MW-1 and 0.18 mg/l in MW-9.

LENOX CHINA POMONA, NEW JERSEY

TABLE 1 SECTION 2

GROUNDWATER QUALITY DATA - JANUARY 2004

			· · · · · · ·					MW-2		
Parameter	Units	MW-1	MW-3	MW-4	MW-6	MW-9	MW-10	(MW-10 Dup)	FB	ТВ
pH, Field	pH units	4.90	5.42	5.73	3.87	5.53	5.24	5.24	-	-
Specific Conductance	ms	0.096	0.263	0.221	0.141	0.286	0.122	0.122	-	-
Oxygen, Dissolved	mg/l	9.80	6.70	9.10	8.20	2.90	8.10	8.10	-	-
Temperature, Field	°C	11.9	13.9	11.5	15.2	16.9	15.7	15.7	-	-
Total Suspended Solids	mg/l	9.0	15	6.0	<4.0	<4.0	96.0	95.0	<4.0	-
Total Dissolved Solids	mg/l	79	158	161	97.0	199	182	155	<10	-
Ammonia-Nitrogen	mg/l	< 0.10	-	-	-	0.18	-	-	-	-
Color	CU units	35	. 20	5	<5	5	30	30	<5	-
Sulfate	mg/l	<20	33.6	69.0	45.5	55.4	28.7	29.1	<20	-
Iron, Dissolved	μg/l	<100	-	-	-	-	<100	<100	<100	-
Lead, Dissolved	μg/l	<3.0	13.2	3.8	<3.0	<3.0	<3.0	<3.0	<3.0	-
Sodium, Dissolved	μg/l	9,910	21,200	14,800	10,300	44,300	18,700	17,800	<5,000	
Zinc, Dissolved	μg/l	<20	3,430	66.2	<20	<20	<20	<20	<20	-
Iron, Total	μg/l	669	-	-	-	-	1,780	2,010	<100	-
Lead, Total	μg/l	<3.0	24.9	5.9	<3.0	<3.0	6.0	8.4	<3.0	-
Sodium, Total	μg/l	10,900	20,900	14,200	9,760	45,200	16,000	16,100	<5,000	-
Zinc, Total	μg/l	<20	3,420	63.0	<20	<20	<20	<20	<20	-
Volatile Organic Compounds										
1,1-Dichloroethene	μg/l	< 0.43	-	-	-	-	< 0.43	< 0.43	<0.43	< 0.43
Cis-1,2-Dichloroethene	μg/l	< 0.20	_	-	-	-	< 0.20	< 0.20	< 0.20	< 0.20
Trans-1,2-Dichloroethene	μg/l	< 0.53	-	_	-	-	< 0.53	< 0.53	<0.53	< 0.53
Methylene Chloride	μg/l	< 0.64	-	-	-	_	< 0.64	< 0.64	<0.64	<0.64
Trichloroethene (TCE)	μg/l	< 0.19	_	-	-	-	3.0	3.3	<0.19	<0.19
Vinyl Chloride	μg/l	< 0.67	-	-	_	-	< 0.67	< 0.67	< 0.67	< 0.67
Sum of Volatile Organic Compounds		<1.33			-		4.24	4.54	<1.33	<1.33

Notes:

Values in **bold** font exceed the site specific Groundwater Quality Criteria for Lead (10 μ g/l), Zinc (36.7 μ g/l) or TCE (1.0 μ g/l).

⁻⁼ Not Analyzed <= Not Detected J = Estimated Value

3.0 GAC TREATMENT SYSTEM MONITORING PROGRAM (DGW)

Groundwater samples from the GAC unit influent, mid-point, and effluent sampling ports were analyzed for TCE and its breakdown products (1,1-DCE, cis/trans 1,2-DCE, and vinyl chloride), total and dissolved iron, lead, and zinc, TDS, and TSS. The analytical results are summarized in Table 1, Section 3.

The January 2004 GAC monitoring results are summarized below:

- The GAC influent sample contained TCE at 4.5 μ g/l. The mid-point and effluent samples did not contain TCE at concentrations exceeding the 0.50 μ g/l laboratory reporting limit.
- 1,1-Dichloroethene, cis-1,2,-dichloroethene, trans-1,2-dichloroethene and vinyl chloride were not detected in the influent, mid-point or effluent samples at concentrations greater than their respective laboratory reporting limits.
- Lead concentrations in the unfiltered influent, mid-point and effluent samples were 2.0 μ g/l, <1.3 μ g/l and 1.6 μ g/l, respectively. Lead concentrations in the filtered samples were <1.3 μ g/l, 1.7 μ g/l and <1.3 μ g/l, respectively.
- Zinc concentrations in the unfiltered influent, mid-point and effluent samples were 23.4 μ g/l, 32.7 μ g/l and 160 μ g/l, respectively. Zinc concentrations in the filtered samples were 27.0 μ g/l, 73.2 μ g/l and 161 μ g/l, respectively.
- Iron concentrations in the unfiltered influent, mid-point and effluent samples were $<39.2~\mu g/l$, $<39.2~\mu g/l$ and $67.2~\mu g/l$, respectively. Iron concentrations in the filtered samples were $<39.2~\mu g/l$, $97.6~\mu g/l$ and $<39.2~\mu g/l$, respectively.

- TDS concentrations in the influent, mid-point and effluent samples were 113 mg/l, 99 mg/l and 163 mg/l, respectively.
- TSS concentrations in the influent and mid-point samples were both less than the laboratory reporting limit of 10 mg/l. The TSS concentration in the effluent sample was 12 mg/l.

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 3

GAC TREATMENT SYSTEM SAMPLING RESULTS, JANUARY 2004

Permit	PO-GAC-INF	PO-GAC-MID		Percent
Limits	1/14/2004	1/14/2004	1/14/2004	Removal
1.0	4.5	<0.5	1	
2.0	<0.5	P. Contraction of the Contractio		
2.0	<0.5	✓ <0.5	<0.5	
2.0	<0.5	√ <0.5	✓ <0.5	/ NA
5.0	<0.5	<0.5	<0.5	/ NA
NL	<39.2	/ <39.2	✓ 67.2	✓ NA
NL	<39.2	97.6	<39.2	√ NA
NL	2.0	<1.3	1.6	/ NA
NL	<1.3	✓ 1.7	<1.3	/ NA
NL	23.4	32.7	160	, NA
NL	27.0	73.2	/ 161	√ NA
NL	113	99	163	NA
NL	<10	<10	12	/ NA
	1.0 2.0 2.0 2.0 5.0 NL NL NL NL NL	Limits 1/14/2004	Limits 1/14/2004 1/14/2004	Limits 1/14/2004 1/14/2004 1/14/2004 1.0 4.5 <0.5

Notes:

 μ g/l - Micrograms per liter

NL - No limit

mg/l - Milligrams per liter

NA - Not applicable

Values in **bold** exceed the site specific Groundwater Quality Criteria of 1.0 μ g/l for TCE.

^{* -} Results less than the laboratory minimum detection limit were considered to be one half the minimum detection limit

4.0 DEPTH TO WATER, WATER LEVEL ELEVATIONS, AND TREATMENT SYSTEM FLOW MONITORING (DGW)

4.1 Depth to Water and Water Level Elevations

The January 20, 2004 depth to water and water level elevation data is summarized in Table 1, Section 4. Depths to water in the wells on the south and north sides of the plant that screen the same interval as the recovery wells were used to develop the water level elevation and groundwater flow map (Figure 1). As shown in Figure 1, the groundwater flow direction is to the northeast, which is consistent with previous measurements.

The depth to water measurements in the well points installed downgradient of the recovery wells were plotted to develop the water level elevation and groundwater flow direction maps shown in Figures 2 and 3.

4.2 Treatment System Flow Monitoring

In a letter to Lenox dated April 18, 2000, NJDEP requested that Lenox propose an "Average Daily Volume" (ADV) that would represent the minimum pumping volume required to adequately capture the TCE plume. The ADV would be calculated by dividing the total volume of groundwater extracted by the recovery system each month by the number of days in the month and would be reported quarterly to NJDEP. In a letter to NJDEP dated May 19, 2000, Lenox proposed an ADV of 268,000 gallons per day, which was based on the results of groundwater modeling and the empirical water level and groundwater chemistry data developed since the recovery system started in 1991.

During the period December 1 through December 31 2003, the calculated ADV was 320,563 gallons per day. During the period January 1 through January 31, 2004, the calculated ADV was 314,409 gallons per day. During the period February 1 through February 29, 2004, the calculated ADV was 308,448 gallons per day.

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 4

WATER LEVEL MEASUREMENTS, JANUARY 20, 2004

	Measuring Point	Denth to Water	Water Level Elevation
Well No.	Elevation (ft. above mean sea level)	Depth to Water (ft. below MP)	(ft. above mean sea level)
P1	(it. above ineali sea level) 65.69	6.52	59.17
PlA	66.32	6.78	59.54
PIB	66.34	6.85	59.49
P5	66.74	6.10	60.64
P5A	66.74	7.56	59.18
P8A P8B	70.02	9.83	59.67 60.24
P9A	70.90	11.60	59.30
P9B	70.97	11.74	59.23
P9C	71.31	11.77	59.54
MW1	69.28	10.01	59.27
MW3	67.09 66.98	8.64 5.98	58.45 61.00
MW4 MW5	64.17	7.63	56.54
MW6	65.08	7.38	57.70
MW7	67.31	9.20	58.11
MW8	67.16	8.37	58.79
MW9	69.51	11.55	57.96 57.57
MW10 MW11	63.51	5.94 6.55	56.50
MW12D	62.89	6.20	56.69
MW12S	62.62	5.84	56.78
MW13	64.66	7.53	57.13
MW14D	63.63	6.47	57.16
MW14S MW15	63.64	6.42 8.00	57.22 58.07
MW16	62.07	5.73	56.34
MW17	62.09	5.59	56.50
MW23	61.49	5.45	56.04
MW23A	61.78	5.78	56.00
MW24	62.60	5.17	56.19 55.96
MW25 MW25A	61.13	5.29	56.00
MW25B	61.22	5.22	56.00
MW26A (B30A)	62.48	6.70	55.78
MW26B (B30B)	61.65	5.85	55.80
MW72	64.19	5.71	58.48
MW73 MW74	63.06	5.20	57.86 57.27
MW75	60.15	4.54	55.61
MW76	60.60	5.16	55.44
MW77	60.41	5.07	55.34
MW78	59.84	4.30	55.54 55.71
MW79A MW80	60.51	4.80	57.79
MW81	61.90	5.58	56.32
B31	62.19	6.72	55.47
B32	63.29	7.59	55.70
B53	62.31	5.55	56.76 56.74
B54 B59	62.39	5.65	56.74 55.57
B66	61.71	5.98	55.73
B66A	61.60	5.84	55.76
B66B	61.86	6.08	55.78
B67	62.29	6.71	55.58
B70A	61.39	5.32	56.07 55.81
B71 PZ1S	60.27	4.67	55.60
PZ1D	60.52	4.93	55.59
PZ2S	60.52	4.90	55.62
PZ2D	60.70	5.07	55.63
PZ3S	61.47	5.88	55.59
PZ3D	61.60	5.99 5.14	55.61 55.66
PZ4S PZ4D	61.09	5.50	55.59
PZ5\$	60.47	4.72	55.75
PZ5D	60.56	4.90	55.66
PZ6S	60.79	5.09	55.70
PZ6D	60.73	5.05	55.68

5.0 TCE MONITORING PROGRAM (MOA)

5.1 Background

A groundwater investigation performed at the Lenox China facility between January 1987 and February 1990 by Geraghty & Miller (G&M) identified two TCE plumes emanating from an antecedent drum storage pad and degreaser sump. Both antecedent waste handling areas are no longer in use. A second on-site degreaser sump was removed from service in June 1993. Lenox initiated a quarterly groundwater monitoring program to delineate and track the TCE plumes identified by G&M. The monitoring results were also used to design the GWCAS.

5.2 Field Procedures

Groundwater samples were collected from fifteen monitoring wells at the Lenox facility and along White Horse Pike on January 20-22, 2004. All sampling was performed in accordance with the most recently revised (April 1996) GWSAP and SGWSAP approved by the NJDEP.

Each well used to monitor the TCE remediation system contains a three-quarter-inch inner-diameter pump column attached to a one-foot section of well screen. The bottom of the pump column screen is set approximately two feet above the top of the well screen to ensure that the total volume of standing water in the well casing is removed during purging. To purge the wells, a peristaltic pump was attached to the top of the pump column using drinking-water grade polyethylene tubing. Three to five times the volume of standing water in each well was removed and field parameters (pH, specific conductivity, temperature and dissolved oxygen) were monitored during purging. The field parameter data is provided on the well sampling logs in Appendix A. Samples for metals analysis were collected directly from the discharge of the peristaltic pump. A new section of tubing was used for each well to avoid cross-contamination. Samples for VOC analysis were collected with 60 cc Teflon bailers dedicated to each well.

Unfiltered samples were analyzed for VOCs, iron, zinc, lead, TDS and TSS. Filtered samples were analyzed for iron, zinc and lead. Field blank and duplicate samples collected during the

monitoring program and a trip blank supplied by the laboratory were analyzed for quality assurance purposes. All analyses were performed by Accutest Laboratories, located in Dayton, New Jersey (NJDEP certification No. 12129).

5.3 Groundwater Monitoring Results

The groundwater analytical data is summarized in Tables 1, 2, 3 and 4, Section 5. The extent of TCE in groundwater during the October 2003 monitoring round is shown on Figure 4. The laboratory data reports are provided in Appendix C, which is bound separately.

The January 2004 monitoring results are summarized below:

- The TCE concentration increased in well MW-15 since the last monitoring round (0.67 J μ g/l in October 2003 to 0.96 J μ g/l in January 2004).
- TCE concentrations decreased in wells MW-10, MW-25, B-31, MW-77, MW-78 and MW-79A since the last monitoring round. The largest decrease occurred in well MW-10 (5.8 µg/l in October 2003 to 3.0 µg/l in January 2004).
- The TCE concentration remained the same $(1.3 \mu g/l)$ in MW-12S.
- TCE concentrations remained effectively unchanged at less than the laboratory reporting limit in wells MW-1, MW-13, B-59, MW-75, MW-76, MW-80 and MW-81.
- Cis-1,2-dichloroethene was detected in the samples from wells MW-77 (0.89 J μ g/l) and MW-79A (3.3 μ g/l). Trans-1,2-dichloroethene was detected in the sample from well MW-79A (0.73 J μ g/l). No other TCE breakdown products were detected above laboratory reporting limits in any wells.
- Iron was detected above the laboratory reporting limit of 100 μg/l in the unfiltered samples from wells MW-1, MW-10 and MW-75 at concentrations ranging from 129 μg/l

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 1 SECTION 5

SUMMARY OF TCE CONCENTRATIONS IN GROUNDWATER (JUL. 2001-JAN. 2004)

Well	October 15-17, 2002	January 29-30, 2003	April 14-16, 2003	July 22-24, 2003	October 28-30, 2003	Jan. 21-22, 2004
MWI	<0.15	< 0.15	<0.19	<0.19	<0.19	<0.19
MW10	6.8	3.9	<0.19	<0.19	5.8	3.0
MW12S	1.7	1.6	<0.19	<0.19	1.3	1.3
MWI2D	-	-	<0.19	-	-	-
MW13	<0.15	<0.15	· <0.19	<0.19	< 0.19	<0.19
MW15	0.59	2.2	1.3	<0.19	0.67 J	0.96 J
MW23	-	-	<0.19	-	-	-
MW25	3.4	2.5	1.5	1.1	0.86 J	<0.19
B31 (MW27)	6.6	24.4	26.1	15.7	10.7	10.0
B32 (MW28)	-	-	3.4	-	=	
B53	-	-	10.3	-	_	
B54	-	-	75.4	-	-	
B59	<0.15	0.62 J	0.71 J	0.96 J	< 0.19	<0.19
B66	-	-	37.7	=	- -	
B71	-	-	1.2	-	-	
MW75	<0.15/<0.15	<0.15/<0.15	<0.19/<0.19	<0.19/<0.19	<0.19/<0.19	<0.19/<0.19
MW76	<0.15	0.39 J	<0.19	<0.19	<0.19	<0.19
MW77	1.9	2.3	1.9	0.67 J	1.7	1.4
MW78	1.0	1.7	1.8	1.1	1.4	1.3
MW79A	3.7	6.4	3.8	<0.19	6.0	5.4
MW80	<0.15	<0.15	<0.19	<0.19	<0.19	<0.19
MW81	0.53	0.50 J	< 0.19	<0.19	<0.19	<0.19
GAC Influent	7.6	5.6	9.91	20.22	7.6	4.5
GAC Effluent	<0.26	<0.26	. <0.26	<0.26	<0.5	<0.5
GAC Mid-Vessel	<0.26	<0.26	0.37	<0.26	<0.5	

Notes:

All samples analyzed by USEPA Method 624, 601 or 502.2/524.2.

All concentrations are presented in micrograms per liter (mg/l).

- = Not analyzed J = Estimated concentration

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 mg/l).

Table 1, Section 5 Continued...

Well	July 23-25, 2001	October 16-17, 2001	January 21-23, 2002	April 8-10, 2002	May 1, 2002	July 17-19, 2002
MWI	<0.30	<0.30	<0.30	<0.30	-	<0.15
MW10	11.6/12.0	9.6/8.8	2.6/2.7	8.6/8.5	-	6.4
MW12S	1.8	1.4	1.4	1.4	-	1.8
MW12D	-	-	-	6.0	-	
MW13	<0.30	<0.30	<0.30	<0.30	_	<0.15
MW15	1.2	0.83	1.3	1.9	-	1.3
MW23	-	, –	-	61.7	_	
MW25	17.6	14.0	9.0	6.4		4.:
B31 (MW27)	15.7	13.0	11.1	10.8	-	1.1
B32 (MW28)	-	-	- -	13.7	=	
B53	-	-	-	6.2	-	
B54	-	-	-	87.4	-	
B59	2.2	1.3	1.3	0.90	-	0.60
B66	-	-	-	41.0	-	
B70A	-	-	-	<0.30	-	
B71	-	-	-	0.47	-	
MW75	<0.30	<0.30	<0.30/<0.30	<0.30/<0.30	<0.30	<0.15/<0.15
MW76	0.46	0.42	< 0.30	0.45	0.41	<0.13
MW77	2.9	2.8	2.5	2.3	2.2	2.5
MW78	1.2	1.2	1.4	1.3	1.2	1.0
MW79A	2.9	3.1	3.8	3.8	4.3	6.0
MW80	<0.30	<0.30	<0.30	<0.30	_	<0.15
MW81	0.61	0.38	0.48	0.47	-	0.62
GAC Influent	16.0	15.0	11.0	11.0	_	8.7
GAC Effluent	< 0.49	<0.49	<0.49	<0.26	_	<0.20
GAC Mid-Vessel	< 0.49	<0.49	<0.49			1.0

Notes:

All samples analyzed by USEPA Method 624, 601 or 502.2/524.2.

All concentrations are presented in micrograms per liter (mg/l).

- = Not analyzed J = Estimated concentration

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 mg/l).

LENOX CHINA FACILITY AND ADJACENT AREA POMONA, NEW JERSEY

TABLE 2 SECTION 5

TCE AND ASSOCIATED BREAKDOWN PRODUCT CONCENTRATIONS, JANUARY 21-22, 2004

					
Well	TCE	cis-DCE	trans-DCE	1,1 DCE	Vinyl Chloride
MW-1	<0.19	< 0.20 v	< 0.53 ~	< 0.43 ~	< 0.67 ✓
MW-10	3.0 ✓	< 0.20 ✓	< 0.53 🗸	< 0.43 /	< 0.67~
MW-12S	1.3 🗸	< 0.20 /	< 0.53	< 0.43 ~	< 0.67 -
MW-13	<0.19 🗸	< 0.20 🗸	< 0.53 _V	< 0.43 /	< 0.67~
MW-15	0.96 J /	< 0.20 >	< 0.53	< 0.43 ~	< 0.67 ~
MW-25	<0.19 🗸	< 0.20 🗸	< 0.53 V	< 0.43 🗸	< 0.67 ✓
B-31	10.0 🗸	< 0.20 ✓	< 0.53 🗸	< 0.43 ✓	< 0.67
B-59	<0.19 🗸	< 0.20	< 0.53 🗸	< 0.43	< 0.67 ~
MW-75	<0.19 v	< 0.20 ~	< 0.53 ~	< 0.43 ~	< 0.67 ~
MW-85 (Dup MW-75)	<0.19 /	< 0.20/	< 0.53	< 0.43 ✓	< 0.67
MW-76	<0.19 🗸	< 0.20 🗸	< 0.53 ~	< 0.43 ✓	< 0.67 🗸
MW-77	1.4	0.89 J *V	< 0.53 ~	< 0.43 /	< 0.67 ✓
MW-78	1.3 🗸	< 0.20 🗸	< 0.53	< 0.43 🗸	< 0.67 ✓
MW-79A	5.4 V	3.3	0.73 J	< 0.43	< 0.67~
MW-80	<0.19	< 0.20 ✓	< 0.53 ✓	< 0.43	< 0.67
MW-81	<0.19 🗸	< 0.20	< 0.53	< 0.43 ✓	< 0.67 🗸

Notes:

All concentrations are presented in micrograms per liter ($\mu g/l$).

J = Estimated concentration.

Values in **bold** exceed the site specific Groundwater Quality Criteria for TCE (1.0 µg/l).

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 3 SECTION 5

INORGANIC ANALYTE CONCENTRATIONS, JANUARY 21-22, 2004

Well No.	MW-1	MW=10***	MW-12S	MW-13	MW-15	MW-25	B-31	B-59
Metals (μg/l)								
Iron (Unfiltered)	669	ر 1,780	<100	<100	<100	<100	<100	<100
Iron (Filtered)	<100	✓ <100	✓ <100	<100	<100	<100	<100	<100
Tead (Unfiltered)	<3.0	· 6.0	<3.0	/ <3.0	<3.0	<3.0	<3.0	<3.0
Lead (Filtered)	<3.0	✓ <3.0	✓ <3.0	<3.0	<3.0	/ <3.0	<3.0	<3.0
Zinc (Unfiltered)	<20	<20	· <20	✓ <20	97.3	104	69.9	<20
Zinc (Filtered)	<20	· <20	20.2	<20	98.9	/ 103	68.3	/ <20 L
TDS (mg/l)	79.0	√ 182	/ 140	/ 123	V 146	86.0	100	80.0
TSS (mg/l)	9.0	√ 96.0	· <4.0	/ <4.0	<4.0	<4.0	<4.0	<4.0

Notes:

 μ g/l = Micrograms per liter.

mg/l = Milligrams per liter.

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 μ g/l) and Zinc (36.7 μ g/l).

Table 3, Section 5 Continued . . .

Well No.	MW-75	MW-85*	MW-76	MW-77	MW-78	MW≣79A*	MW-80	MW-81
Metals (μg/l)								
Iron (Unfiltered)	. 129	119	<100	<100	<100	<100	<100	<100
lron (Filtered)	<100	✓ <100	<100	× <100	<100	<100	<100	<100
Lead (Unfiltered)	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Lead (Filtered)	<3.0	<3.0	<3.0	· <3.0	<3.0	<3.0	<3.0	<3.0
Zinc (Unfiltered)	<20	<20	20.6	<20	<20	23.3	<20	✓ <20 ✓
≪Zinc (Filtered)	<20	/ <20	√ 26°.5	Z 20.5	<20	<20	<20	<20 /
TDS (mg/l)	23.0	√ 51.0	/ 126	36.0	26.0	√ 89.0	80.0	37.0
TSS (mg/l)	<4.0	<4.0	<4.0	✓ <4.0	<4.0	✓ <4.0	✓ <4.0	<4.0

Notes:

 $\mu g/I = Micrograms per liter.$

mg/l = Milligrams per liter.

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 µg/l) and Zinc (36.7 µg/l).

^{*} MW-85 is duplicate of MW-75.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 4 SECTION 5

QUALITY ASSURANCE/QUALITY CONTROL SAMPLES, JANUARY 21-22, 2004

Sample ID Sample Matrix Date	FB Field Blank 1/22/2004	FB-1 Field Blank 1/21/2004	FB-2 Field Blank 1/21/2004	TB Trip Blank
Trichloroethene	<0.19	<0.19	<0.19	· <0.19
Iron (Unfiltered)	<100	<100	<100	NA
Iron (Filtered)	<100	<100	<100	NA
Lead (Unfiltered)	<3.0	<3.0	√ <3.0	/ NA
Lead (Filtered)	<3.0	<3.0	<3.0	NA
Zinc (Unfiltered)	<20	<20	√ <20	√ NA
Zinc (Filtered)	<20	<20	<20	NA
TDS (mg/l)	<10	<10	J <10	√ NA
TSS (mg/l)	<4.0	<4.0	√ . <4.0	√ NA

Notes:

All concentrations presented in micrograms per liter ($\mu g/l$), unless otherwise noted. mg/l = Milligrams per liter.

NA = Not Analyzed

03/22/2004 MON 16:08 FAX 6092799436

→→→ LENOX

(MW-75) to 1,780 µg/l (MW-10). Iron was not detected above the laboratory reporting limit of 100 µg/l in any filtered sample.

- Lead was detected above the laboratory reporting limit of 3.0 µg/l only in the unfiltered sample from well MW-10 at a concentration of 6.0 μg/l. Lead was not detected above the laboratory reporting limit of 3.0 µg/l in any filtered sample.
- Zinc was detected above the laboratory reporting limit of 20 µg/l in the unfiltered samples from wells MW-15, MW-25, B-31, MW-76, and MW-79A at concentrations ranging from 20.6 µg/l (MW-76) to 104 µg/l (MW-25). Zinc was detected above the laboratory reporting limit of 20 µg/l in the filtered samples from wells MW-12S, MW-15, MW-25, B-31, MW-76 and MW-77 at concentrations ranging from 20.2 µg/l (MW-12S) to 103 μg/l (MW-25).
- TDS concentrations ranged from 23 mg/l (MW-75) to 182 mg/l (MW-10). concentrations were less than the laboratory reporting limit of 4.0 mg/l in all samples except MW-1 (9.0 mg/l) and MW-10 (96.0 mg/l).
- There was fair agreement between analyte concentrations in the field and duplicate samples (MW-85) from well MW-75.
- TCE, iron, lead, zinc, TDS and TSS were not detected in the field blank samples at concentrations exceeding their respective laboratory reporting limits. No VOCs were detected in the trip blank at concentrations exceeding laboratory reporting limits.
- Chloroform was detected in the samples from a number of wells, at concentrations ranging from 1.2 µg/l (MW-13) to 3.1 µg/l (MW-79A and MW-81). Chloroform was not detected in the field or trip blanks and is not considered a site-related compound.

The monitoring data indicates that since the last monitoring round, TCE concentrations in samples from the sentinel wells along White Horse Pike decreased in wells MW-77, MW-78 and

MW-79Å, and remained the same in wells MW-75 and MW-76 at less than the laboratory reporting limit. The greatest change in concentration occurred at well MW-79Å, which decreased from $6.0\,\mu\text{g/l}$ in October 2003 to $5.4\,\mu\text{g/l}$ in January 2004.

6.0 SOLID WASTE MANAGEMENT UNIT NO. 2 AND AREA OF CONCERN GROUNDWATER MONITORING PROGRAM (MOA)

The groundwater sampling data from monitoring wells MW-10, MW-17, MW-72, MW-73 and MW-74 are used to assess groundwater quality downgradient of Solid Waste Management Unit (SWMU) No. 2 and the Area of Concern (AOC). Unfiltered and filtered samples from these wells were analyzed for lead and zinc. The groundwater analytical data is summarized in Table 1, Section 6. The laboratory data reports are included in Appendix C.

The January 2004 monitoring results are summarized below:

- Lead was detected in the unfiltered samples from wells MW-10 (6.0 μg/l), MW-72 (11.3 μg/l), MW-73 (16.1 μg/l) and MW-74 (3.8 μg/l) at concentrations exceeding the laboratory reporting limit of 3.0 μg/l. Lead was not detected in any of the filtered samples at a concentrations exceeding the laboratory reporting limit of 3.0 μg/l.
- Zinc was detected in the unfiltered samples from wells MW-17 (114 μg/l), MW-72 (23.3 μg/l), MW-73 (59.6 μg/l) and MW-74 (83.0 μg/l) at concentrations exceeding the laboratory reporting limit of 20 μg/l. Zinc was detected in the filtered samples from wells MW-17 (118 μg/l), MW-73 (46.6 μg/l) and MW-74 (82.2 μg/l) at concentrations exceeding the laboratory reporting limit of 20 μg/l.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 1 SECTION 6

SWMU NO. 2 AND AOC GROUNDWATER MONITORING RESULTS, JANUARY 21-22, 2004

Well No.	MW-10	MW-17	MW-72	MW-73	MW-74
Lead (Unfiltered)	₹ 6 [0]	<3.0	/ 11.3	/ 16.1	√ <u>3</u> :8
Lead (Filtered)	<3.0	<3.0	<3.0	<3.0	<3.0
Zinc (Unfiltered)	<20	√ 114	√ £23.3	√ 59.6	83.0
Zinc (Filtered)	<20	√ 11 8	✓ <20	√ 46.6	√ 82.2

Notes:

All concentrations presented in micrograms per liter ($\mu g/l$).

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 μ g/l) and Zinc (36.7 μ g/l).

7.0 CLASSIFICATION EXCEPTION AREA/ STATISTICAL ANALYSIS PROGRAM (MOA)

The groundwater sampling data from MW-1, MW-3F, MW-6F, MW-12S, MW-13, MW-73, MW-74, MW-75 and MW-79A is used to assess groundwater quality downgradient of the Lenox facility. Unfiltered and filtered samples from these wells were analyzed for lead and zinc. The groundwater analytical results are summarized in Table 1, Section 7. The laboratory data reports are included in Appendix C.

The January 2004 results for the Classification Exception Area (CEA) monitoring program are summarized below:

- Lead concentrations in the unfiltered samples ranged from less than the laboratory reporting limit of 3.0 μ g/l to 16.1 μ g/l (MW-73). Lead concentrations in the filtered samples were all less than the laboratory reporting limit of 3.0 μ g/l.
- Zinc concentrations in the unfiltered samples ranged from less than the laboratory reporting limit of 20 μ g/l to 83.0 μ g/l (MW-74). Zinc concentrations in the filtered samples ranged from less than the laboratory reporting limit of 20 μ g/l to 82.2 μ g/l (MW-74).
- TCE concentrations in all monitoring wells, as summarized in Table 1, Section 5, ranged from less than the laboratory reporting limit of 0.19 μ g/l to 10.0 μ g/l, with the highest concentration in the sample from well B-31. TCE concentrations in the sentinel wells along the White Horse Pike ranged from less than the 0.19 μ g/l laboratory reporting limit in wells MW-75 and MW-76 to 5.4 μ g/l in well MW-79A.

In accordance with the CEA monitoring program, the sentinel well TCE monitoring data collected during the past eight consecutive quarters was statistically analyzed using the Mann-Whitney U-Test. The results are summarized in Table 2, Section 7. The null hypothesis was accepted at the 90 percent confidence level (U>3) for four wells (MW-75, MW-76, MW-78 and MW-79A) indicating that TCE concentrations at these wells have statistically remained the same

or increased over the past eight monitoring periods. MW-75 has not contained any detectable concentrations of TCE for the past eighteen consecutive quarters. The null hypothesis was rejected (U=/<3) for well MW-77, indicating that the TCE concentration at this well has statistically decreased over the past eight monitoring periods.

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 1 SECTION 7

CEA GROUNDWATER MONITORING RESULTS, JANUARY 21-22, 2004

Well No.	Well No. MW-1		MW-6F	ØMW-12S™	MW-13	
Lead (Unfiltered)	<3.0	√ <u>3</u> .8	✓ <3.0	<3.0	<3.0	
Lead (Filtered)	<3.0	√ <3.0	<3.0	✓ <3.0	<3.0	
Zinc (Unfiltered)	<20	√ <20	<20	<20	<20 v	
Zinc (Filtered) *	<20	√ <20	√ <20	20.2	<20	

Well No.	MW-73	MW-74	MW-75	MW-79A	
Lead (Unfiltered)	16.1	√ 3.8	<3.0	✓ <3.0	
Lead (Filtered)	<3.0	✓ <3.0	<3.0	✓ <3.0	
Zinc (Unfiltered)	59.6	√ 83.0	✓ <20	√ <u>23.3</u>	
Zinc (Filtered)	46.6	✓ 82.2	✓ <20	√ <20	

Notes:

All concentrations presented in micrograms per liter (µg/l).

Values in **bold** exceed the site specific Groundwater Quality Criteria for Lead (10 µg/l) and Zinc (36.7 µg/l).

LENOX CHINA FACILITY AND ADJACENT AREAS POMONA, NEW JERSEY

TABLE 2 SECTION 7

MANN-WHITNEY STATISTICAL TEST SUMMARY

	Eighth Quarter Ending Date						
	Oct-03			Jan-04			
Sentinel Well	Ua	Ub	U	Ua	Ub	U	
MW-75	16	0	8	16	0	8	
MW-76	12	3	7.5	8	0	4	
MW-77	3	1	2	1	0	0.5	
MW-78	12	11	11.5	9	8	8.5	
MW-79A	11	8	9.5	7	5	6	

Notes:

Null hypothesis will be accepted at the 90% confidence level when the calculated U value is greater than 3.

If two or more concentrations are identical the test is calculated twice, once ranking the identical "a" concentrations first (Ua) and once ranking the "b" concentrations first (Ub). The average of these values is the actual "U". (N.J.A.C. 7:26 E App. C)

8.0 RESIDENTIAL WELL SAMPLING

Following discussions with NJDEP and USEPA in 2001, Lenox agreed to develop and coordinate a sampling program with the Atlantic County Health Services (ACDPH) to assess and track TCE and breakdown product concentrations at residential wells located downgradient of the White Horse Pike (Route 30). Lenox initiated the sampling during the fourth quarter of 2001 at the first three homes immediately downgradient of the White Horse Pike that are not served by public water. A fourth residence was added in January 2003 and is included in the list below. In accordance with the plan developed by Lenox, the sampling results are provided to ACDPH, which in turn provides any significant data directly to the homeowners and the USEPA.

The residences covered by the current quarterly sampling program are shown on Figure 5 and are identified as follows:

- RESW-1, 360 S. Mannheim Avenue
- RESW-2, 357 S. Mannheim Avenue
- RESW-3, 353 S. Mannheim Avenue
- RESW-4, 344 S. Mannheim Avenue

Private wells at homes further north and west of Mannheim Avenue are not included in the sampling program due to their distance from White Horse Pike. The wells were sampled on January 21, 2004. Please note that RESW-3 was not sampled during this round. The property was recently sold and ACDPH had not yet informed the new owner of the monitoring program when the sampling event took place.

The current and historical sampling data is summarized in Tables 1 and 2, Section 8. Laboratory data reports are included in Appendix C. The first quarter monitoring results are summarized below:

TCE was detected at a concentration above the laboratory reporting limit of 0.50 μ g/l in RESW-1 (0.54 μ g/l). TCE was not detected in the other two samples. TCE breakdown

products were not detected in any sample at concentrations exceeding the laboratory reporting limits.

- Chloroform was detected in two samples at concentrations of 6.5 μ g/l (RESW-1) and 0.49 J μ g/l (RESW-2). Chloroform is not considered a site-related compound.
- Methyl tert-butyl ether (MTBE) was detected in the sample from RESW-4 at a concentration of 1.8 μg/l. MTBE is not considered a site-related compound.
- Benzene was detected in the sample from RESW-2 at concentrations of $0.60~\mu g/l$. Benzene is not considered to be site-related compounds.

The RESW-1 residence was connected to the municipal water supply system on August 20, 2002.

LENOX CHINA POMONA, NEW JERSEY

TABLE 1 SECTION 8

RESIDENTIAL WELL SAMPLING RESULTS, JANUARY 21, 2004

Well ID	∉RESW:1↓	RESW-2	RESW-4
Acetone	''	_	-
2-Butanone	_	_	_
Benzene	_	0.60 🗸	_
Bromobenzene	_	-	-
Bromochloromethane	-	-	-
Bromodichloromethane	-	-	-
Bromoform	-	-	_
Bromomethane	-	-	_
n-Butylbenzene	-	-	
sec-Butylbenzene	-	-	-
tert-Butylbenzene	-	-	-
Carbon disulfide	-	-	-
Chlorobenzene	-	-	-
Chloroethane	- ,	- ,	-
Chloroform	6.5 :/	0.49 J 🗸	-
Chloromethane	-	-	-
o-Chlorotoluene	-	-	-
p-Chlorotoluene	-	-	-
Carbon tetrachloride	-	-	-
1,1-Dichloroethane	-	-	-
I,1-Dichloroethene	-	-	-
1,1-Dichloropropene	-	-	-
1,2-Dibromo-3-chloropropane	-	-	-
1,2-Dibromoethane	-	-	-
1,2-Dichloroethane	-	-	-
1,2-Dichloropropane	-	-	-
1,3,-Dichloropropane	-	- 1	- 1
2,2-Dichloropropane	-	-	-
Dibromochloromethane	-	- i	-
Dibromomethane	-	_	_
Dichlorodifluoromethane			_
Cis-1,3-Dichloropropene m-Dichlorobenzene		_ i	_
o-Dichlorobenzene			_
p-Dichlorobenzene		_	_
Trans-1,2-Dichloroethene	_		_
Cis-1,2,-Dichloroethene	_	_	-
Trans-1,3-Dichloropropene	-	-	-
Ethylbenzene	-	_	-
Hexachlorobutadiene	-	- 1	-
Hexane	-	-	-
2-Hexanone	-	-	· _
Isopropylbenzene	· .	- !	-
p-Isopropylbenzene	- '	-	-
Methylene Chloride	-	-	- ,
Methyl Tert Butyl Ether	-	-	1.8
4-Methyl-2-Pentanone	-	-	-
Naphthalene	-	-	-
n-Propylbenzene	-	-	-
Styrene	-	-	-
1,1,1,2-Tetrachloroethane	-	-	-
I,1,1-Trichloroethane	-	-	-
1,1,2,2-Tetrachloroethane	-	-	-
1,1,2-Trichloroethane	-	-	-
1,2,3-Trichlorobenzene	-	-	- }
1,2,3-Trichloropropane	-	-	-
1,2,4-Trichlorobenzene	-	-	-
1,2,4-Trimethylbenzene	- ,	-	-
1,3,5-Trimethylbenzene	- 1	-	-
Toluene		-	-
Trichloroethene	0.54√	-	-
Trichlorofluoromethane	-	-	-
Vinyl Chloride	-	-	-
Xylenes, total	-		

Notes:

All concentrations presented in micrograms per liter (ug/l).

- = Parameter not detected above laboratory detection limit.

LENOX CHINA POMONA, NEW JERSEY

TABLE 2 SECTION 8

HISTORICAL RESIDENTIAL WELL SAMPLING RESULTS AS OF JAN. 2004 (DETECTED COMPOUNDS ONLY)

Sample ID	Date	Benzene	Chloroform	Chlorobenzene	m-Dichloro benzene	p-Dichloro benzene	MTBE	Trichloroethene
RESW-1	3/19/2002	-	5.0	-	-	-	-	1.4
	5/16/2002	-	3.6	-	-	-	-	1.5
	7/18/2002	-	4.1	-	-	-	-	1.2
	10/16/2002	-	4.2		-	-	0.29	0.88
ŀ	1/29/2003	-	6,6		-	-	-	-
	4/14/2003	-	4.9	-	-	-	-	0.56
	7/23/2003	-	5.5	-	-	-	-	1.1
	10/30/2003	-	7.9	-	-	-	-	0.53
	1/21/2004	-	6.5 ✓	-	-	-	-	0.54~
RESW-2	3/19/2002	1.3	0.72	-	-	0.26	-	-
	5/16/2002	0.88	0.51	· -	-	0.33	-	-
	7/18/2002	0.96	0.38	-	-	0.38	-	-
	10/16/2002	1.4	0.29	-	0.071	0.33		-
	1/29/2003	1.4	0.25 J	· -	-	0.26 J	- -	-
	4/14/2003	1.4	0.28 J	0.098 J	0.10 J	0.52	-	-
	7/23/2003	0.78	- ·	-	-	- [-	-
	10/30/2003	0.52	0.68	-	-	0.31 J		-
	1/21/2004	0.60	0.49 J 🗸	-	-	- ·		
RESW-3	3/19/2002	-	3.1	-	-	· -	-	-
	6/4/2002	-	2.7	-	-	-	-	-
	7/18/2002	-	2.6	-	-	-	-	-
	10/16/2002	-	2.4	-	-	-	-	-
	1/29/2003	NS	NS	NS	NS	NS	NS	NS
	4/16/2003	-	2.4	-	~	-	-	-
	7/23/2003	-	2.9	-	-	-	-	-
	10/30/2003	NS	NS	NS	NS	NS	NS	NS
	1/21/2004	NS	NS	NS	NS	NS	NS	NS
RESW-4	1/29/2003	-	0.29 J	-	-	-	1.3	-
	4/14/2003	-	0.22 J	-	-	-	1.3	-
	7/23/2003	-	-	-	-	-	1.7	→
	10/30/2003	-	-	-	-	-	2.3	-
	1/21/2004		-		-	-	1.8 🗸	-

Notes:

All concentrations presented in micrograms per liter (ug/l).

Values in **bold** font exceed the site specific Groundwater Quality Criteria for TCE (1.0 ug/l).

^{- =} Not detected above laboratory detection limit.

J = Estimated concentration. NS = Not sampled.

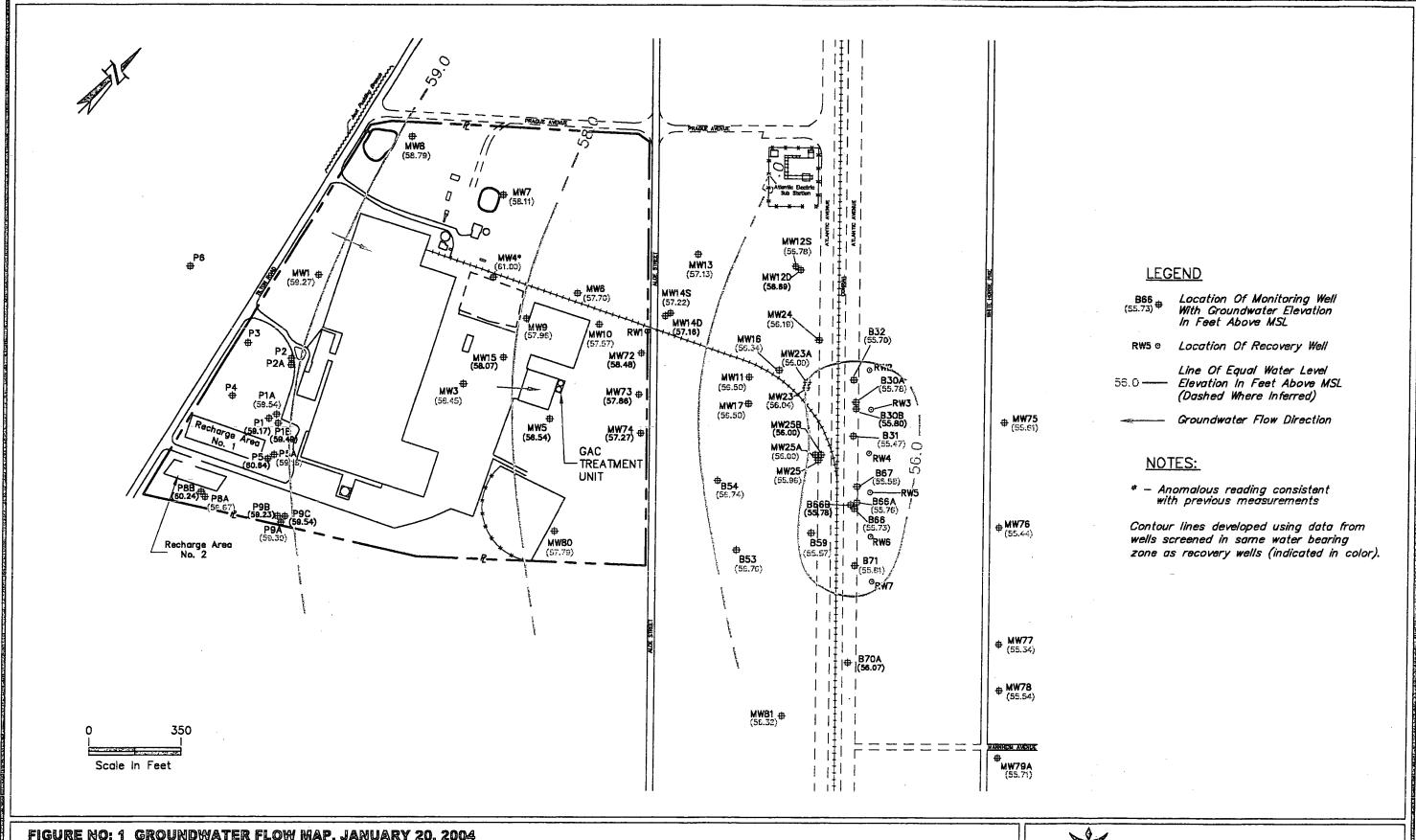
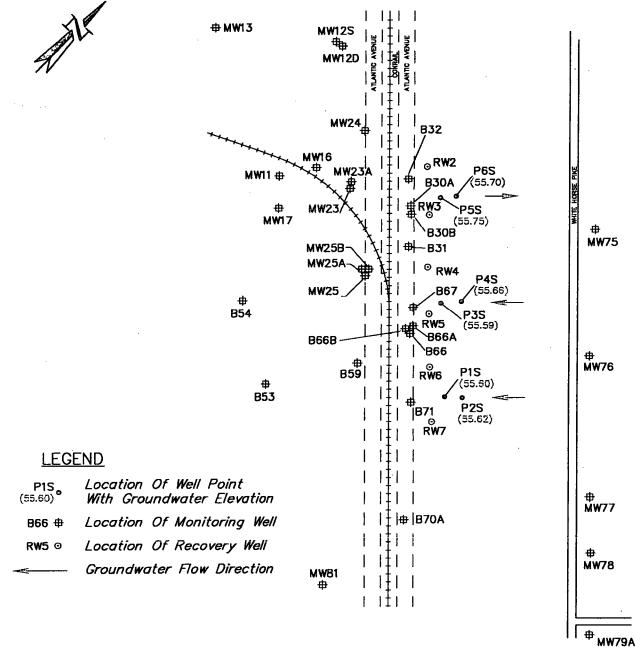



FIGURE NO: 1 GROUNDWATER FLOW MAP, JANUARY 20, 2004 LENOX CHINA POMONA, NEW JERSEY

Source: Base Map Obtained From Geraghty & Miller's August 1992 Groundwater Monitoring Report

NOTE:

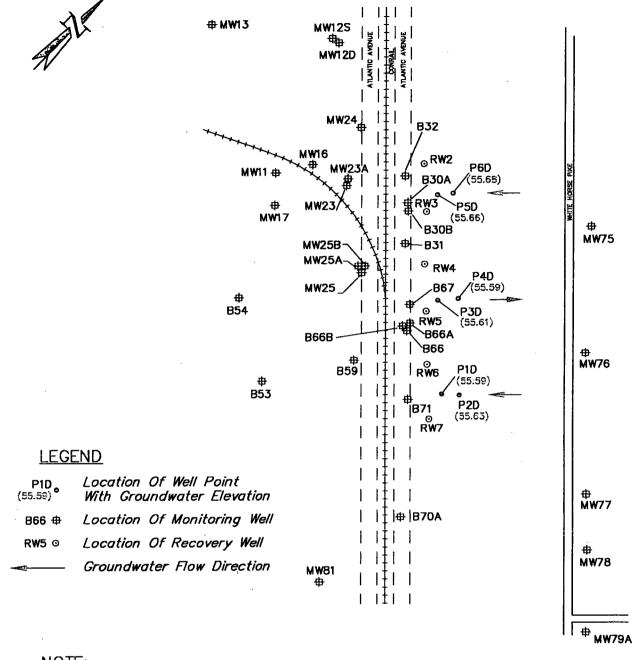
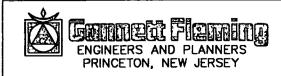

Base Map Obtained From Geraghty & Miller's August 1992 Groundwater Monitoring Report.

FIGURE NO: 2 GROUNDWATER FLOW WAP, SHALLOW WELLS
JANUARY 20, 2004

LENOX CHINA POMONA, NEW JERSEY


NOTE:

Base Map Obtained From Geraghty & Miller's August 1992 Groundwater Monitoring Report.

FIGURE NO: 3 GROUNDWATER FLOW MAP, DEEP WELLS JANUARY 20, 2004

LENOX CHINA POMONA, NEW JERSEY

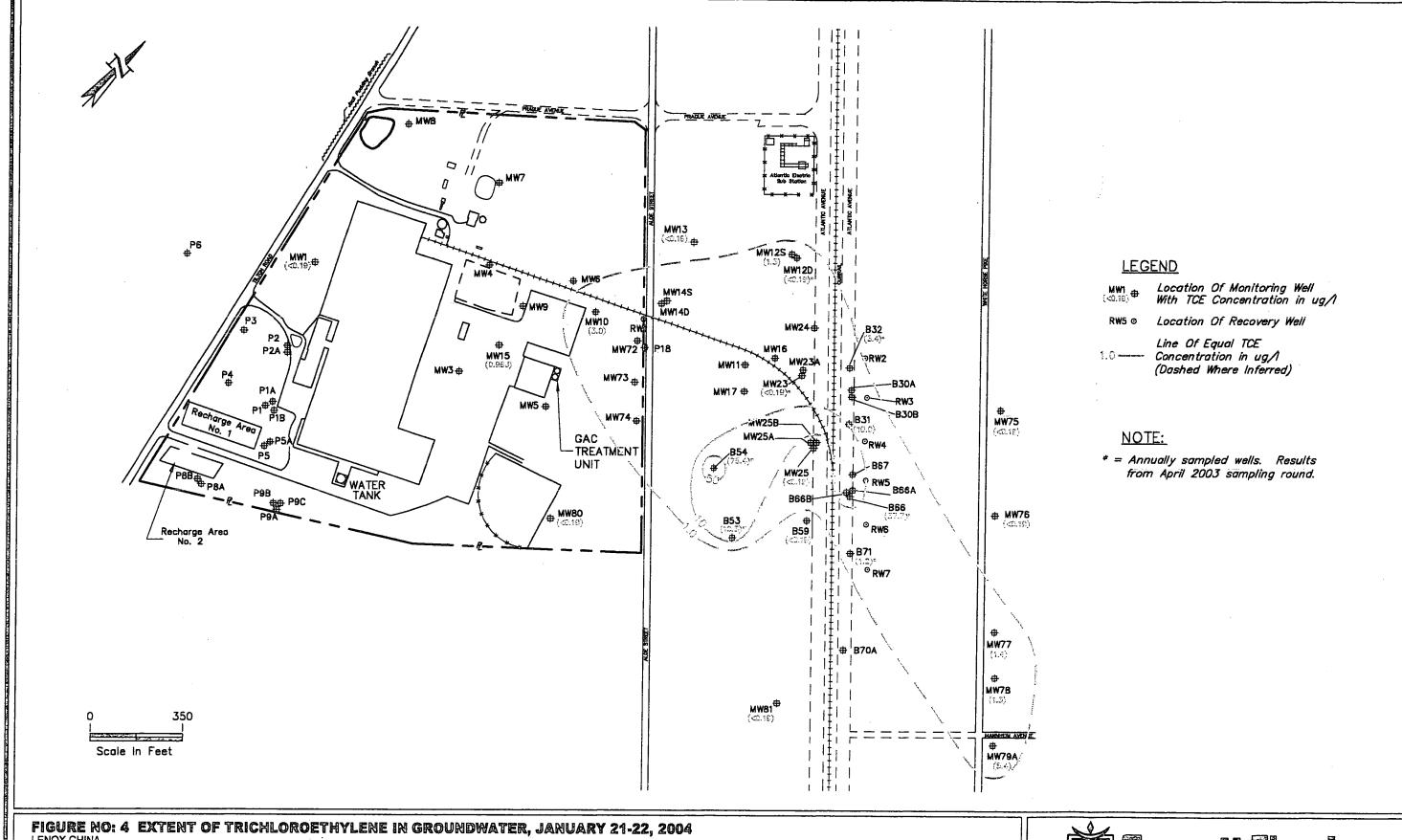


Figure No: 4 Extent of trichloroethylene in groundwater, January 21-22, 2004 Lenox China Pomona, New Jersey

Source: Base Map Obtained From Geraghty & Miller's August 1992 Groundwater Monitoring Report

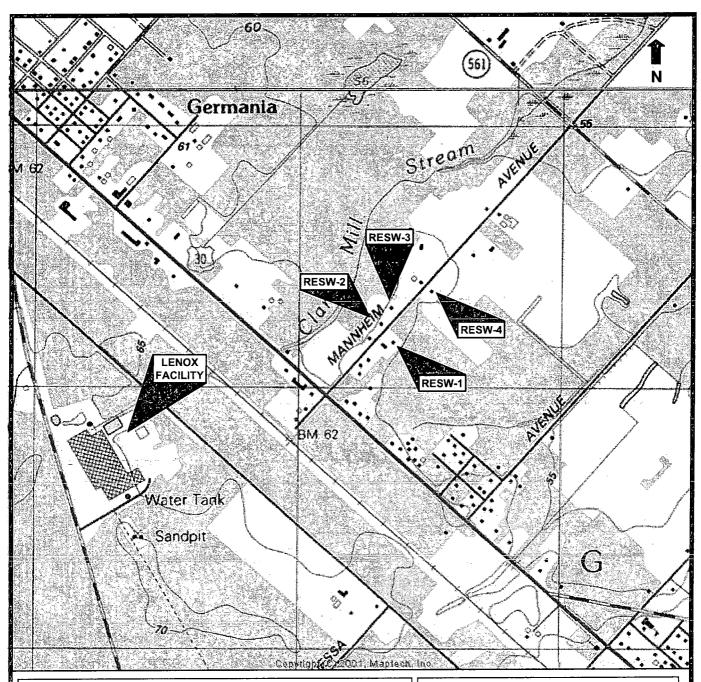


FIGURE NO: 5
RESIDENTIAL WELL SAMPLING LOCATIONS
LENOX CHINA
POMONA, NEW JERSEY

Approximate Scale: 1 inch = 1,200 feet

Source Map: USGS 7.5 Minute Series, Topo Map - Pleasantville, NJ 1989

ENGINEERS AND PLANNERS PRINCETON, NEW JERSEY

APPENDIX A

WELL SAMPLING LOGS

I. General Informa Client Name: Leno		ona, NJ		Project No.: <u>42</u> 4	430.00 <u>2</u>
Project Name: TCl				Sampled By: RI	B/SK
Well No.: MW-3F				Well Use: Moni	toring
Sample ID: MW-3	<u>F</u>	Sample Date: 1/	22/04	Sample Time: 8	:40
II. Well Informatio PID Reading: -	n :		Well Diameter:	2 inches	
Static Depth to Wa	ater: <u>4.38</u> ft. b	elow m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Total Well Depth:	17.40 ft. belov	v m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Δ h: 13.02 feet			Volume of Stan	ding Water: <u>2.08</u> <u>{</u>	gallons
Volume to be remo	oved: 6.30 gall	ons	Actual Volume	removed: <u>6.50</u> gal	lons
III. Sampling Infor Purging Method: Peristaltic Pum Bailer			Submersible Other	•	
Well Drawdown/R	ecovery:	\boxtimes Good	Poor	Other	
Pump Flow Rate:	0.5 gpm	Purge Start: <u>8</u>	:28	Purge Time:	<u>12</u> min.
Purge Chemistry:	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
8:32	2	4.17	0.119	7.1	8.1
8:35	4	4.12	0.121	6.0	7.8
8:38	6	4.09	0.120	6.3	7.8
Depth to water aft		-		Time: 8:40 Time: 8:40	
Depth to water pri	_				Other
Sample Appearance			· ·	Cieai L] Other
Sample Odor:	⊠ Non	e [] C	other		•
IV. Sample Analyse Sample Parameter Metals:		⊠ Filtered		☑ Unfilter	red
Laboratory: Accut	est		Date Shippe	ed: <u>1/22/04</u>	

				•	4
I. General Information Client Name: Let		na, NJ		Project No.: 424	430.002
Project Name: TCE Quarterly Monitoring			·	Sampled By: RI	B/SK
Well No.: MW-6	Ē			Well Use: Moni	toring
Sample ID: MW-	<u>6F</u>	Sample Date: 1/2	22/04	Sample Time: 9	:09
II. Well Informat	ion:		Well Diameter:	<u>2_inches</u>	
Static Depth to V	Vater : 13.87 ft. b	elow m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Total Well Depth			•	t (m.p.): <u>PVC Cas</u>	
Δ h: <u>10.00</u> feet		•	_	ding Water: <u>1.60</u> §	
Volume to be ren	noved: 4.80 gallo	ons		removed: <u>5.00</u> gal	
volume to be rea	110 ved: 4.00 gam	J113	netual Volume	emo (eu <u>5.66</u> gai	
III. Sampling Info	:		☐ Submersible	Pump	
Bailer	·	57			
Well Drawdown/	Recovery:	⊠ Good	Poor	Other	
Pump Flow Rate	: <u>0.7</u> gpm	Purge Start: 9:	:02	Purge Time:	<u>7</u> min.
Purge Chemistry	7*				
	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
9:03	1.5	3.80	0.126	9.3	11.1
9:05	3.0	3.92	0.123	8.4	11.9
9:07	4.5	4.00	0.124	8.6	12.0
					!
· ·		-			
					<u> </u>
Depth to water a	fter purge: <u>13.95</u>	ft. below m.p.		Time: <u>9:09</u>	
Depth to water p	rior to sampling	g: <u>13.95</u> ft. below m	.p.	Time: 9:09	
Sample Appeara	nce: Turb	id S	lightly Turbid	⊠ Clear □] Other
Sample Odor:	None None ■ None Non	. 🗆 0	ther		
IV. Sample Analy Sample Paramete				⊠ 11 cu	
Metals:		☐ Filtered		\(\) Unfilter	rea
			Date Shippe	1 100 10 1	

I. General Inform Client Name: Len		na, NJ		Project No.: <u>424</u>	<u>130.002</u>
Project Name: TCE Quarterly Monitoring				Sampled By: RI	B/SK
Well No.: MW-12	<u>S</u>			Well Use: Moni	toring
Sample ID: MW-	<u>12S</u>	Sample Date: 1/	<u>21/04</u>	Sample Time: 1	<u>1:01</u>
II. Well Informati	on:		Well Diameter:	2_inches	
Static Depth to W	ater: <u>5.84</u> ft. be	low m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Total Well Depth	: <u>66.00</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Δ h: <u>60.16</u> feet			Volume of Stand	ling Water: <u>9.63</u> g	gallons
Volume to be rem	oved: 28.89 gal	lons	Actual Volume	removed: <u>30.00</u> ga	llons
III. Sampling Info Purging Method: ☐ Peristaltic Pun ☐ Bailer			Submersible Other	Pump	
Well Drawdown/l	Recovery:	⊠ Good	Poor	Other	.
Pump Flow Rate:	3.8 gpm	Purge Start: 1	0:53	Purge Time:	<u>8</u> min.
Purge Chemistry	:				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
10:55	10	4.08	0.189	1.4	12.1
10:58	20	4.07	0.188	2.1	12.3
11:00	30	4.08	0.187	2.0	12.3
					· · · · · · · · · · · · · · · · · · ·
		<u> </u>			
Depth to water at	ter purge: <u>5.88</u>	ft. below m.p.		Time: <u>11:01</u>	
Depth to water pr	ior to sampling	: <u>5.88</u> ft. below m.p	o.	Time: <u>11:01</u>	
Sample Appearan	nce: Turbi	d S	lightly Turbid	⊠ Clear □	Other
Sample Odor:	None	· 🗆 o	ther		-
IV. Sample Analys Sample Paramete Metals:	rs: <u>Voc, Metals,</u>	TDS, TSS ☑ Filtered		☑ Unfilter	ed
Laboratory: Accu	itest		Date Shippe	d : 1/ <u>22/04</u>	

			•	
I. General Information: Client Name: <u>Lenox China, Pon</u>	nona, NJ		Project No.: 42	430.002
Project Name: TCE Quarterly N	Monitoring		Sampled By: R	B/SK
Well No.: <u>MW-13</u>			Well Use: Moni	itoring
Sample ID: MW-13	Sample Date: 1/	21/04	Sample Time: 8	<u>:42</u>
II. Well Information:PID Reading: _Static Depth to Water: 7.53 ft. 1	Well Diameter:	<u>2</u> inches t (m.p.): <u>PVC Cas</u>	ino	
•	-			
Total Well Depth: 61.40 ft. belo	ow m.p.	•	t (m.p.): <u>PVC Cas</u>	
Δ h: 53.87 feet			ding Water: <u>8.62</u>	-
Volume to be removed: 25.86 g	gallons	Actual Volume	removed: <u>30.00</u> ga	illons
III. Sampling Information: Purging Method: ☑ Peristaltic Pump ☐ Bailer		Submersible Other	Pump	
Well Drawdown/Recovery:	\boxtimes Good	Poor	Other	
Pump Flow Rate: 3.8 gpm Purge Sta		:34	Purge Time:	<u>8</u> min.
Purge Chemistry:				
Time Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
8:36 10	3.77	0.188	6.2	12.5
8:38 20	3.75	0.191	7.0	12.8
8:41 30	3.80	0.190	7.5	12.9
				-
Depth to water after purge: 8.0	<u>12</u> ft. below m.p.		Time: <u>8:42</u>	
Depth to water prior to sampling	ng : <u>8.02</u> ft. below m. ₁	p.	Time: <u>8:42</u>	
Sample Appearance:	rbid 🔲 S	lightly Turbid	⊠ Clear [Other
Sample Odor: No	ne. 🔲 C	other		
IV. Sample Analyses: Sample Parameters: Voc. Meta Metals:	l <u>s, TDS, TSS</u> ⊠ Filtered		🛚 Unfilter	red
	Date Shipped: 1/22/04			

I. General Information: Client Name: Lenox China, Pomor	na, NJ		Project No.: 4	2430.002
Project Name: TCE Quarterly Mon	nitoring		Sampled By: I	RB/SK
Well No.: <u>MW-15</u>		•	Well Use: Mon	nitoring
Sample ID: MW-15	Sample Date: 1/	21/04	Sample Time:	<u>11:25</u>
 II. Well Information: PID Reading: - Static Depth to Water: 8.00 ft. bel Total Well Depth: 21.52 ft. below Δ h: 13.52 feet 	Well Diameter: 2 inches Measuring Point (m.p.): PVC Casing Measuring Point (m.p.): PVC Casing Volume of Standing Water: 2.16 gallons			
Volume to be removed: 6.48 gallo	ns .	Actual Volume	•	
III. Sampling Information: Purging Method: ☑ Peristaltic Pump ☐ Bailer Well Drawdown/Recovery: Pump Flow Rate: 3.0 gpm	⊠ Good Purge Start: 1	Submersible Pump Other Poor Other		
Purge Chemistry:				
Time Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
11:21 5	4.46	0.212	7.2	14.1
11:22 10	4.51	0.211	8.4	14.6
11:24 15	4.46	0.211	7.4	14.9
Depth to water after purge: 8.10 f Depth to water prior to sampling:		D.	Time: 11:25 Time: 11:25	
Sample Appearance: Turbic	<u> </u>		—— ⊠ Clear [Other
Sample Odor: None	_	ther		
IV. Sample Analyses: Sample Parameters: Voc. Metals. Metals:	·		⊠ Unfilt	ered .
Laboratory: Accutest	Z I morod	Date Shippe		u

I. General Information Client Name: <u>Lenox C</u>		<u>a, NJ</u>		Project No.: <u>42</u> 4	130.002
Project Name: TCE Q	uarterly Mon	itoring		Sampled By: RI	<u>3/SK</u>
Well No.: <u>MW-17</u>				Well Use: Moni	toring
Sample ID: MW-17		Sample Date: 1/2	<u>21/04</u>	Sample Time: 10	0:00
II. Well Information: PID Reading: -			Well Diameter:	2 inches	
Static Depth to Water	: <u>5.59</u> ft. belo	ow m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Total Well Depth: 66.0	00 ft. below 1	n.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Δ h: 60.41 feet	•		Volume of Stan	ding Water: 9.67	gallons
Volume to be removed	1: <u>29.01</u> gallo	ons	Actual Volume	removed: <u>30.00</u> ga	llons
III. Sampling Informate Purging Method: ☐ Peristaltic Pump ☐ Bailer	tion:		Submersible Other	-	
Well Drawdown/Reco	very:	⊠ Good	Poor	Other	
• —		Purge Start: 9:	52	Purge Time:	8 min.
Purge Chemistry:	or			•	
Time (Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
9:54	10	4.17	0.148	6.3	13.4
9:56	20	4.18	0.147	7.1	13.6
9:59	30	4.12	0.147	5.6	13.7
Depth to water after p	-			Time: 10:00	
Depth to water prior t	o sampling:	·		Time: <u>10:00</u>	-
Sample Appearance:	☐ Turbic	i 🗌 SI	lightly Turbid	⊠ Clear	Other
Sample Odor:	None None	□ o	ther		
IV. Sample Analyses: Sample Parameters: Metals:	<u> 1etals</u>	⊠ Filtered		∑ Unfilter	ed
Laboratory: Accutest			Date Shippe		

I. General Information Client Name: Le		na, NJ		Project No.: 42	2430.002
Project Name: <u>T</u>	CE Quarterly Mo	nitoring		Sampled By: F	RB/SK
Well No.: MW-2	<u>5</u>			Well Use: Mor	nitoring
Sample ID: MW	<u>-25</u>	Sample Date: 1/	21/04	Sample Time:	10:20
II. Well Informate PID Reading: -	tion:		Well Diameter:	<u>2</u> inches	
Static Depth to V	Water : <u>5.17</u> ft. bel	ow m.p.	Measuring Poin	ıt (m.p.): <u>PVC Ca</u>	sing
Total Well Dept	h: <u>44.60</u> ft. below	m.p.	Measuring Poin	nt (m.p.): <u>PVC Ca</u>	sing
Δ h: 39.43 feet			Volume of Stan	ding Water: 6.31	gallons
Volume to be rea	moved: <u>18.93</u> gall	ons	Actual Volume	removed: 25.00 g	gallons
III. Sampling Inj Purging Method ☑ Peristaltic Pu	:		☐ Submersible	Pump	
☐ Bailer			Other	· .	
Well Drawdown	Recovery:	⊠ Good	Poor	Other	
Pump Flow Rate: 4.2 gpm Purge Start: 10:14 Purge Time: 6 min.			e: <u>6</u> min.		
-		_			
Purge Chemistry					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
10:16	10	4.08	0.128	6.3	13.1
10:18	20	4.11	0.127	6.7	13.2
10:19	25	4.09	0.127	6.5	13.2
					<u> </u>
Depth to water a	- -	t. below m.p. 5.25 ft. below m.p	J.	Time: 10:20 Time: 10:20	
Sample Appeara			lightly Turbid	⊠ Clear [Other
Sample Odor:	None Non		ther	_	
IV. Sample Analy				⊠ Unfilte	Pred
Metals:	utost	M Lineien	Data Shinn		700
Laboratory: Acc	<u>utest</u>		Date Shipp	eu. <u>1/22/04</u>	

I. General Inform Client Name: Let		na, NJ		Project No.: 42	2430.002
Project Name: To	CE Quarterly Mo	nitoring		Sampled By: R	LB/SK
Well No.: <u>B-31</u>				Well Use: Mon	uitoring
Sample ID: B-31		Sample Date: 1/	21/04	Sample Time: 1	13:24
II. Well Informate	ion:	·	Well Diameter:	<u>1.5</u> inches	
Static Depth to V	Vater: <u>6.72</u> ft. be	low m.p.	Measuring Poir	nt (m.p.): <u>PVC Ca</u>	sing
Total Well Depth	ı: <u>66.00</u> ft. below	m.p.	Measuring Poir	nt (m.p.): <u>PVC Ca</u>	sing
Δ h: <u>59.28</u> feet			Volume of Stan	ding Water: 5.34	gallons
Volume to be ren	noved: <u>16.02</u> gall	lons	Actual Volume	removed: <u>17.00</u> g	allons
III. Sampling Info Purging Method: Peristaltic Pur Bailer			Submersible	-	
	D	Ma			
Well Drawdown/	·	Good	Poor	Other	
Pump Flow Rate Purge Chemistry		Purge Start: 1	<u>3:16</u>	Purge Time	: <u>8</u> min.
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
13:18	5	4.49	0.138	9.9	12.8
13:21	10	4.17	0.153	10.2	12.8
13:23	15	4.19	0.157	10.5	12.9
Depth to water at		_	J.,	Time: 13:24 Time: 13:24	
Sample Appearai		•		Clear	Other
Sample Odor:	None Non		ther	_	
IV. Sample Analy. Sample Paramete				⊠ Unfilte	rad
Metals: Laboratory: Accu	44	⊠ Filtered	Dot- CL:		ıcu
· · · · · · · · · ·	ITECT		Date Shippe	ea: 1/22/04	

WELL	SAMPLING
	LOG

Gannett Fleming 202 Wall Street Princeton, New Jersey 08540 (609) 279-9140 (Telephone) (609) 279-9436 (Facsimile)

→→→ LENOX

I. General Informa	tion:		-		
Client Name: <u>Lenc</u>		ona, NJ		Project No.: 42	430.002
Project Name: <u>TC</u>	E Quarterly Mo	onitoring		Sampled By: R	B/SK
Well No.: <u>B-59</u>	•	·		Well Use: Mon	itoring
Sample ID: <u>B-59</u>		Sample Date: 1/	<u>21/04</u>	Sample Time: 9	9:37
		-			
<i>II. Well Informatio</i> PID Reading: <u>-</u>	on:		Well Diameter:	1.5 inches	
Static Depth to W	ater: <u>4.45</u> ft. bo	low m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing
Total Well Depth:	48.00 ft. below	/ m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing
Δ h: <u>43.55</u> feet			Volume of Stane	ding Water: <u>3.92</u>	gallons
Volume to be rem	oved: <u>11.76</u> gal	llons	Actual Volume	removed: <u>25.00</u> g	allons
					•
III. Sampling Info	rmation:				
Purging Method: Peristaltic Pum	מ		Submersible	Pump	
Bailer			Other	•	
— ———— Well Drawdown/R	lecovery:	⊠ Good	Poor	Other	
Pump Flow Rate:	-	Purge Start: 9:	:30	Purge Time	
	<i>0</i> 1	- 5		-	
Purge Chemistry:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ррт)	Temp. (°C)
9:32	10	4.00	0.117	8.6	12.5
9:34	20	4.02	0.119 -	8.5	12.6
9:36	25	4.00	0.120	8.4	12.7
				-	
					<u> </u>
Depth to water aft	er purge: <u>4.55</u>	ft. below m.p.		Time: <u>9:37</u>	
Depth to water pr	ior to sampling	g: <u>4.55</u> ft. below m.j	5 .	Time: <u>9:37</u>	
Sample Appearan	ce: Turb	id 🔲 S	lightly Turbid	⊠ Clear [Other
Sample Odor:	🛮 None	<u> </u>	ther		
IV. Sample Analys	es:				
Sample Parameter		TDS, TSS			
Metals:				☑ Unfilte	ered
Laboratory: Accut	est		Date Shippe	ed: <u>1/22/04</u>	

I. General Information Client Name: Le	mation: mox China, Pomor	na, NJ		Project No .: <u>42</u>	2430.002
Project Name: <u>T</u>	CE Quarterly Mor	nitoring		Sampled By: R	LB/SK
Well No.: MW-7	<u>'2</u>			Well Use: Mon	uitoring
Sample ID: MW	<u>-72</u>	Sample Date: 1/	<u>21/04</u>	Sample Time: 1	16:06
II. Well Information: PID Reading: Static Depth to Water: 5.71 ft. below m.p. Total Well Depth: 15.50 ft. below m.p.			Well Diameter: 2 inches Measuring Point (m.p.): PVC Casing Measuring Point (m.p.): PVC Casing		
Δ h: 9.79 feet	<u> </u>	F	_	ding Water: 1.57	
	moved: <u>4.71</u> gallo	ns		removed: <u>6.00</u> ga	_
III. Sampling Ing Purging Method ☐ Peristaltic Pu ☐ Bailer Well Drawdown	: mp	⊠ Good	Submersible Other	-	
Pump Flow Rate	e: 0.9 gpm	Purge Start: 1:	5:59	Purge Time	: 7 min.
Purge Chemistry					- - - · · ·
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
16:02	2	4.98	0.85	6.5	9.4
16:04	4	4.95	0.84	5.2	9.5
16:06	. 6	4.86	0.85	4.7	9.9
				· · · · · · · · · · · · · · · · · · ·	-
Depth to water a	ifter purge: <u>6.05</u> f	t. below m.p.		Time: 16:06	
Depth to water p	orior to sampling:	6.05 ft. below m.p).	Time : 16:06	
Sample Appeara	nce: Turbio	i 🗌 Si	lightly Turbid	⊠ Clear [Other
Sample Odor:	~	По	ther		
Sumpre Guore	None None	U			
IV. Sample Analy	vses:			XI Infilte	red
IV. Sample Analy	vses: ers: <u>Metals</u>	☐ ○	Date Shippe	∑ Unfilte	red

I. General Information: Client Name: <u>Lenox China, Pomon</u>	a, NJ		Project No.: 424	<u>430.002</u>
Project Name: TCE Quarterly Mon		Sampled By: R	<u> 3/SK</u>	
Well No.: <u>MW-73</u>			Well Use: Moni	toring
Sample ID: MW-73	Sample Date: 1/2	21/04	Sample Time: 10	<u>6:29</u>
II. Well Information: PID Reading: -		Well Diameter:	2 inches	
Static Depth to Water: 5.20 ft. belo	ow m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Total Well Depth: 13.50 ft. below t	n.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Δ h: <u>8.30</u> feet		Volume of Stan	ding Water: <u>1.33</u> g	gallons
Volume to be removed: 3.99 gallor	ns	Actual Volume	removed: <u>6.00</u> gal	lons
III. Sampling Information:Purging Method:☑ Peristaltic Pump		Submersible	Pump	
☐ Bailer		Other		
Well Drawdown/Recovery:	⊠ Good	Poor	Other	
Pump Flow Rate: 0.7 gpm Purge Start		5:20	Purge Time:	9 min.
	-		J	
Purge Chemistry:				
Time Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
16:23 2	5.43	0.094	8.2	6.9
16:26 4	5.48	0.098	8.0	6.7
16:29 6	5.51	0.094	7.6	0.7
Depth to water after purge: 5.38 ft			Time: <u>16:29</u> Time: <u>16:29</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Depth to water prior to sampling:		•		Other
Sample Appearance:		lightly Turbid	Clear _	
Sample Odor: None		ther		
IV. Sample Analyses: Sample Parameters: Metals Metals:	⊠ Filtered		∑ Unfilter	red
Laboratory: Accutest	K-7 - 11101.04	Date Shippe		

				•		
I. General Inform Client Name: Len		ona, NJ		Project No.: 424	430.002	
Project Name: TO	E Quarterly M	onitoring		Sampled By: <u>RB/SK</u>		
Well No.: <u>MW-74</u>	•			Well Use: Monitoring		
Sample ID: MW-		Sample Date: 1/	21/04	Sample Time: 10	6:56	
II. Well Informati PID Reading: -	on:		Well Diameter:	2_inches		
Static Depth to Water: 5.29 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Total Well Depth	: <u>13.65</u> ft. belov	v m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Δ h: 8.36 feet			Volume of Stan	ding Water: <u>1.34</u> ;	gallons	
Volume to be rem	noved: <u>4.02</u> gal	lons	Actual Volume	removed: 4.50 gal	lons	
III. Sampling Info Purging Method: Peristaltic Pun Bailer			Submersible	-		
	D	⊠ Good	Poor	Other		
Well Drawdown/	-	_				
Pump Flow Rate:	: <u>0.4</u> gpm	Purge Start: <u>1</u>	<u>6:45</u>	Purge Time:	11 mm.	
Purge Chemistry	•		·			
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
16:48	1.5	5.36	0.201	9.8	7.8 8.0	
16:51	3.0	5.41	0.190 0.179	9.9	8.6	
16:55	4.5	3.39	0.179	9.9	0.0	
	· · · · · · · · · · · · · · · · · · ·					
Depth to water at	fter purge: 5.50	ft. below m.p.		Time: <u>16:56</u>	·	
Depth to water p	rior to samplin	g: <u>5.50</u> ft. below m. ₁	p.	Time: <u>16:56</u> ✓		
Sample Appearan	nce: 🔲 Tur	bid S	lightly Turbid	⊠ Clear	Other	
Sample Odor:	⊠ Nor	ne 🔲 C	other	·		
IV. Sample Analy. Sample Paramete Metals:				⊠ Unfilte	red	
Laboratory: Acci	ıtest		Date Shipped : <u>1/22/04</u>			

I. General Inform Client Name: Len		ona, NJ		Project No.: 42	430.002	
Project Name: TO	E Quarterly Mo	onitoring	Sampled By: <u>RB/SK</u>			
Well No.: <u>MW-75</u>		•	Well Use: Monitoring			
Sample ID: MW-7	75/MW-85	Sample Date: <u>1/</u>	21/04	Sample Time: 1	<u>5:35</u>	
II. Well Informati PID Reading: -	on:		Well Diameter:	2 inches		
Static Depth to Water: 4.54 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Total Well Depth	: <u>70.00</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing	
Δ h: <u>65.46</u> feet			Volume of Stand	ding Water: <u>10.47</u>	gallons	
Volume to be rem	oved: <u>31.41</u> ga	llons	Actual Volume	removed: <u>32.00</u> ga	allons	
III. Sampling Info Purging Method: ☐ Peristaltic Pun ☐ Bailer			Submersible Other	-		
Well Drawdown/l	Recovery:	⊠ Good	Poor	Other		
Pump Flow Rate:	4.0 gpm	Purge Start: 1	<u>15:27</u> Purge Time : <u>8</u> min.			
Purge Chemistry:						
Purge Chemistry:	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
Time 15:29	Gallons 10	4.14	0.030	5.4	13.6	
Time 15:29 15:31	Gallons 10 20	4.14 4.10	0.030 0.027	5.4 10.8	13.6 13.2	
Time 15:29	Gallons 10	4.14	0.030	5.4	13.6	
Time 15:29 15:31	Gallons 10 20	4.14 4.10	0.030 0.027	5.4 10.8	13.6 13.2	
Time 15:29 15:31	Gallons 10 20	4.14 4.10	0.030 0.027	5.4 10.8	13.6 13.2	
Time 15:29 15:31	Gallons 10 20	4.14 4.10	0.030 0.027	5.4 10.8	13.6 13.2	
Time 15:29 15:31	Gallons 10 20 30	4.14 4.10 4.13	0.030 0.027	5.4 10.8	13.6 13.2	
Time 15:29 15:31 15:33 Depth to water af	Gallons 10 20 30 ter purge: 4.62	4.14 4.10 4.13	0.030 0.027 0.026	5.4 10.8 10.8	13.6 13.2	
Time 15:29 15:31 15:33 Depth to water af	Gallons 10 20 30 ter purge: 4.62	4.14 4.10 4.13 ft. below m.p. g: 4.62 ft. below m.p.	0.030 0.027 0.026	5.4 10.8 10.8 Time: <u>15:35</u>	13.6 13.2	
Time 15:29 15:31 15:33 Depth to water af Depth to water pr	Gallons 10 20 30 ter purge: 4.62	4.14 4.10 4.13 ft. below m.p. g: 4.62 ft. below m.p.	0.030 0.027 0.026	5.4 10.8 10.8 Time: 15:35	13.6 13.2 13.3	
Time 15:29 15:31 15:33 Depth to water af Depth to water pr Sample Appearan	Gallons 10 20 30 ter purge: 4.62 ior to sampling ace:	4.14 4.10 4.13 ft. below m.p. g: 4.62 ft. below m.j id S	0.030 0.027 0.026	5.4 10.8 10.8 Time: 15:35	13.6 13.2 13.3	

I. General Inform Client Name: Len		na, NJ		Project No.: 42	<u>2430.002</u>	
Project Name: TO	CE Quarterly Mo	onitoring	Sampled By: <u>RB/SK</u>			
Well No.: <u>MW-76</u>	<u>)</u>		Well Use: Monitoring			
Sample ID: MW-	<u>76</u>	Sample Date: 1/	<u> 21/04</u>	Sample Time: 1	15:11	
II. Well Informati	on:		Well Diameter:	<u>2</u> inches		
Static Depth to Water: 5.16 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing	
Total Well Depth	: <u>70.00</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing	
Δ h: <u>64.84</u> feet			Volume of Stand	ding Water: 10.3	7 gallons	
Volume to be rem	oved: <u>31.11</u> gal	lons	Actual Volume	removed: <u>32.00</u> g	allons	
III. Sampling Info Purging Method: ☐ Peristaltic Pun ☐ Bailer			Submersible Other	Pump		
Well Drawdown/l	Recovery:	⊠ Good	Poor	Other		
Pump Flow Rate:	<u>2.9</u> gpm	Purge Start: 1:	:00 Purge Time: 11 min.			
Purge Chemistry:	:					
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
15:03	10	4.21	0.135	9.7	13.1	
15:06	20	4.20	0.151	9.6	13.2	
15:09	30		0.150	0.0	12.1	
		4.19	0.159	9.9	13.1	
		4.19	0.159	9.9	13.1	
		4.19	0.159	9.9	13.1	
		4.19	0.159	9.9	13.1	
Depth to water af	ter purge: <u>5.25</u>)		0.159	9.9 Time: 15:11	13.1	
Depth to water af		ft. below m.p.			13.1	
-	rior to sampling	ft. below m.p. : <u>5.25</u> ft. below m.p.).	Time: <u>15:11</u> Time: <u>15:11</u>	13.1 Other	
Depth to water pr	rior to sampling	ft. below m.p. : <u>5.25</u> ft. below m.p. d).	Time: 15:11 Time: 15:11		
Depth to water pr Sample Appearan	rior to sampling ace: Turbi None	ft. below m.p. : <u>5.25</u> ft. below m.p d	o. lightly Turbid	Time: <u>15:11</u> Time: <u>15:11</u> ✓ Clear	Other	
Depth to water pro Sample Appearant Sample Odor:	rior to sampling ace: Turbi None	ft. below m.p. : <u>5.25</u> ft. below m.p d	o. lightly Turbid	Time: 15:11 Time: 15:11	Other	

I. General Inform Client Name: Len		na, NJ		Project No.: <u>4</u>	2430.002	
Project Name: TC	E Quarterly Mo	nitoring	Sampled By: <u>RB/SK</u>			
Well No.: <u>MW-77</u>			Well Use: Monitoring			
Sample ID: MW-7	<u> 17</u>	Sample Date: 1/	21/04	Sample Time:	14:48	
•						
II. Well Information PID Reading: -	on:		Well Diameter:	2 inches		
Static Depth to Water: 5.07 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC C</u>	asing	
Total Well Depth	: <u>70.00</u> ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Ca</u>	asing	
Δ h: 64.93 feet			Volume of Stan	ding Water: <u>10.3</u>	39 gallons	
Volume to be rem	oved: <u>31.17</u> gall	lons	Actual Volume	removed: <u>32.00</u> g	gallons	
III. Sampling Info Purging Method: ☐ Peristaltic Pun ☐ Bailer	np	⊠ Good	Submersible Other			
Well Drawdown/I	•	Good	Poor	Other		
Pump Flow Rate:	<u>3.2</u> gpm	Purge Start: 14	<u>4:38</u>	Purge Time	e: <u>10</u> min.	
Purge Chemistry:						
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
14:41	_10	3.93	0.050	10.3	13.1	
14:43	20	3.87	0.048	10.6	13.1	
14:46	30	3.91	0.047	10.7	13.2	
Depth to water af	ter purge: <u>5.10</u> 1	ft. below m.p.		Time: <u>14:48</u>		
Depth to water pr	ior to sampling	: <u>5.10</u> ft. below m.p	o.	Time: <u>14:48</u> ✓	•	
Sample Appearan	ce: Turbi	d S	lightly Turbid	⊠ Clear	Other	
Sample Odor:	None		ther			
IV. Sample Analys	es:					
Sample Paramete	rs: Voc, Metals,			.	_	
Metals:	rs: Voc, Metals,	TDS, TSS ☐ Filtered		⊠ Unfilt	ered	

<i>I. General Inforn</i> Client Name: <u>Le</u>	nation: nox China, Pomor	ıa, NJ		Project No.: 42	<u>2430.002</u>
Project Name: T	CE Quarterly Mor	nitoring	Sampled By: <u>RB/SK</u>		
Well No.: <u>MW-7</u>			Well Use: Monitoring		
Sample ID: MW	_	Sample Date: 1/	21/04	Sample Time: 1	_ '
Sample ID. MW	<u>- 7 0</u>	Sample Date. 117			
<i>II. Well Informa</i> PID Reading: <u>-</u>	tion:		Well Diameter:	2 inches	
Static Depth to Water: 4.30 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing
Total Well Depth: 70.00 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC Ca</u>	sing
Δ h: 65.70 feet			Volume of Stan	ding Water: 10.5	<u>l</u> gallons
	moved: <u>31.53</u> gall	ons ·	Actual Volume	removed: <u>32.00</u> g	allons
III. Sampling Inj Purging Method ☑ Peristaltic Pu ☐ Bailer	:		Submersible Other	•	
	/D	⊠ Good	Poor	Other	
Well Drawdown	•			Purge Time: 9 min.	
Pump Flow Rate	e: <u>3.6</u> gpm	Purge Start: 1	<u>4:19</u>	Purge 11me	: <u>9</u> mm.
Purge Chemistr	v·				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
14:21	10	4.71	0.024	10.4	13.4
14:24	20	4.71	0.023	9.2	13.5
14:26	30	4.58	0.023	10.1	_13.5
					
					
Depth to water a	after purge: <u>4.35</u> 1	ft. below m.p.		Time: <u>14:28</u>	
Depth to water p	orior to sampling	: <u>4.35</u> ft. below m.j	o.	Time: <u>14:28</u>	
Sample Appeara	ance: Turbi	d 🗆 S	lightly Turbid	⊠ Clear [Other
Sample Odor:	None		ther	:	-
IV. Sample Anal Sample Paramet Metals:	yses: ters: <u>Voc, Metals,</u>	TDS, TSS ⊠ Filtered	Date Shinn	∑ Unfilte	ered
I obovotowa: A or	nitact		HATE SPINN	ree 1777/1 1/4	

I. General Information Client Name: Len		na, NJ		Project No.: <u>42</u> 4	130.002
Project Name: TC	E Quarterly Mo	onitoring	Sampled By: <u>RB/SK</u>		
Well No.: MW-79	<u>A</u>		Well Use: Monitoring		
Sample ID: MW-7	<u> 19A</u>	Sample Date: 1/2	21/04	Sample Time: 14	<u>1:06</u>
II. Well Information	on:		Well Diameter:	<u>2</u> inches	
Static Depth to Water: 4.80 ft. below m.p.			Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing
Total Well Depth	70.00 ft. below	m.p.	Measuring Poin	t (m.p.): <u>PVC Cas</u>	ing.
Δ h: 65.20 feet			Volume of Stan	ding Water: <u>10.43</u>	gallons
Volume to be rem	oved: <u>31.29</u> gal	lons	Actual Volume	removed: <u>35.00</u> ga	llons
III. Sampling Info Purging Method: ☐ Peristaltic Pun ☐ Bailer			Submersible		
Well Drawdown/l	Recovery:	⊠ Good	Poor	Other	
Pump Flow Rate:	4.4 gpm	Purge Start: <u>1</u>	3:58	Purge Time:	<u>8</u> min.
Purge Chemistry:		TT (0: 1 TT 1:)	0 0 1()	D O (11111)	T (9C)
Time	Gallons	pH (Std. Units) 4.82	Sp. Cond. (ms) 0.109	D. O. (ppm) 8.6	Temp. (°C) 12.5
14:00 14:02	20	4.82	0.114	9.7	12.7
14:04	30	4.49	0.114	9.5	12.7
11.01					
Depth to water af	tor purge: 4 86	ft below m.p.		Time: <u>14:06</u>	
•					
	`	g: <u>4.86</u> ft. below m. ₁		Time: <u>14:06</u> √	1 ou
Sample Appearar	ice: Turb	id ∐S	lightly Turbid	⊠ Clear _	Other
Sample Odor:	⊠ None		ther		٠.
IV. Sample Analys Sample Paramete Metals:		<u>, TDS, TSS</u> ⊠ Filtered		⊠ Unfilter	red
Laboratory: Accu	test		Date Shippe	ed: <u>1/22/04</u>	

I. General Information: Client Name: Lenox China, Pomon	a, NJ		Project No.: <u>424</u>	30.002	
Project Name: TCE Quarterly Mon	itoring		Sampled By: <u>RB/SK</u>		
Well No.: <u>MW-80</u>			Well Use: Monitoring		
Sample ID: MW-80	Sample Date: 1/2	21/04	Sample Time: 12	2:0 <u>5</u>	
II. Well Information: PID Reading: -		Well Diameter:	_		
Static Depth to Water: 4.70 ft. belo	•		t (m.p.): PVC Casi		
Total Well Depth: 59.60 ft. below r	n.p.		t (m.p.): <u>PVC Casi</u>		
Δ h: <u>54.90</u> feet		Volume of Stand	ding Water: 8.78 g	allons	
Volume to be removed: 26.34 gallo	ons	Actual Volume	removed: <u>30.00</u> ga	llons	
III. Sampling Information: Purging Method: ☐ Peristaltic Pump ☐ Bailer		☐ Submersible	•		
Well Drawdown/Recovery:	⊠ Good	Poor	Other		
· · · · ·	Purge Start: 1		Purge Time: 8 min.		
Pump Flow Rate: 3.8 gpm	ruige Start. 1	<u>1.57</u>	i ui ge Time.	<u>o</u> mm.	
Purge Chemistry: Time Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)	
11:59 10	4.06	0.139	5.6	13.3	
12:02 20	4.04	0.137	5.7	13.8	
12:04 30	4.07	0.137	5.7	14.0	
Depth to water after purge: 4.78 ft	-	•	Time: <u>12:05</u> Time: <u>12:05</u> ✓		
Depth to water prior to sampling:				l Othor	
Sample Appearance:			⊠ Clear	Other	
Sample Odor: None	Цο	ther			
IV. Sample Analyses: Sample Parameters: Voc. Metals. Metals:	<u>FDS, TSS</u> ⊠ Filtered		∪nfilter	ed	
1.400000		Date Shippe			

I. General Inform Client Name: Let		na, NJ		Project No.: 42	430.002
Project Name: To	CE Quarterly Mo	nitoring	Sampled By: <u>RB/SK</u>		
Well No.: MW-8	<u>l</u>		Well Use: Monitoring		
Sample ID: MW-	<u>81</u>	Sample Date: 1/	<u>21/04</u>	Sample Time: 9	<u>:12</u>
II. Well Informate	ion:		Well Diameter:	2 inches	:
Static Depth to Water: 5.58 ft. below m.p.				 nt (m.p.): <u>PVC Cas</u>	sing
Total Well Depth		_		nt (m.p.): <u>PVC Cas</u>	
Δ h: 50.92 feet	i. <u>50.50</u> II. 0010 W	p.		ding Water: 8.15	
		lone		removed: 30.00 ga	_
Volume to be ren	noveu: <u>24.45</u> gan	OHS	Actual Volume	Temoveu. <u>30.00</u> ga	anons
III. Sampling Info Purging Method: Peristaltic Pur			Submersible	•	·
☐ Bailer			Other		
Well Drawdown/	Recovery:	⊠ Good	☐ Poor	Other	
Pump Flow Rate	: <u>3.4</u> gpm	Purge Start: 9	<u>:04</u>	Purge Time:	<u>8</u> min.
Purge Chemistry	:				
Time	Gallons	pH (Std. Units)	Sp. Cond. (ms)	D. O. (ppm)	Temp. (°C)
9:07	10	3.97	0.067	9.2	11.8
9:09	20	3.98	0.067	8.7	12.0
9:11	30	3.99	0.067	9.1	12.1
			-		
	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
Depth to water a	fter purge: <u>5.60</u> 1	ft. below m.p.		Time: <u>9:12</u>	
Depth to water p	rior to sampling	: <u>5.60</u> ft. below m.p	o.	Time: 9:12 /	
Sample Appeara	nce: 🔲 Turbi	d S	lightly Turbid	⊠ Clear □] Other
Sample Odor:	None	□о	ther		
IV. Sample Analy Sample Paramete				⊠ Unfilte	wo d
Metals:		⊠ Filtered	D (C) (ieu
Laboratory: Acci	<u>itest</u>		Date Shippe	e a : <u>1/22/04</u>	

APPENDIX B

CONTOUR MAP REPORT FORM
JANUARY 20, 2004

Project No.: <u>42430.002</u>

Project Name: Lenox China, Pomona: TCE Monitoring

Drawing Description: Groundwater Flow Map, January 20, 2004

Contour Map Reporting Form

	reporting form shall accompany each ground water contour map submets as necessary.	ittal.	Use ac	lditional
1.	Did any surveyed well casing elevations change from the previous sampling events?	Yes		No 🛚
	If yes, attach new "Well Certification - Form B" and identify the reason for the elevation Change (damage to casing, installation of recovery system in monitoring well, etc.)			
2.	Are there any monitoring wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen?	Yes	\boxtimes	No 🗌
	If yes, identify these wells. P-1A, P-5A, P-8A, P-9A, MW-1, MW-3, MW-4, MW-6, MW-8, MW-9, MW-10, MW-11, MW-12S, MW-13, MW-14S, MW-16, MW-17, MW-23, MW-23A, MW-24, MW-25, MW-25A, B30A, MW-75, MW-76, MW-77, MW-78, MW-79A, B-31, B-32, B-53, B-54, B-59, B-66, B-66A, B-67, B-71			
3.	Are there any monitoring wells present at the site but omitted from the contour map?	Yes	\boxtimes	No 🗌
	Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.			
	Wells omitted from the map are screened in a shallower or deeper groundwater interval than that screened by the recovery well system.			
4.	Are there any monitoring wells containing separate phase product during this measuring event? Were any of the monitoring wells with separate phase product included in the ground water contour map?		_	No ⊠ No ⊠
•	If yes, show the formula used to correct the water table elevation.			

Proje	ct No.: 42430.002	Project Name: <u>Lenox China, Po</u>	mona: TCE M	lonitoring
Draw	ing Description: Groundwater Flow Map, January 20), 2004		
5.	Has the ground water flow direction chang previous groundwater contour map?	ged more than 45° from the	Yes	No 🛚
	If yes, discuss reason for change.			
6.	Has ground water mounding and/or depres ground water contour map?	sions been identified in the	Yes 🔀	No 🗌
	Unless the ground water mound and/or deground water remediation system, discoccurrence.			
7.	Are the wells used in the contour map so bearing zone?	reened in the same water-	Yes 🔀	No 🗌
	If no, justify inclusion of those wells.			
			d	
8.	Were the ground water contours computer generated, computer aided, or hand drawn?			
	If computer aided or generated, identify tused.	he interpolation method(s)		
				